Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38258252

RESUMO

Among various polymorphic phases of gallium oxide (Ga2O3), α-phase Ga2O3 has clear advantages such as its heteroepitaxial growth as well as wide bandgap, which is promising for use in power devices. In this work, we demonstrate α-Ga2O3 MOSFETs with hybrid Schottky drain (HSD) contact, comprising both Ohmic and Schottky electrode regions. In comparison with conventional Ohmic drain (OD) contact, a lower on-resistance (Ron) of 2.1 kΩ mm is achieved for variable channel lengths. Physics-based TCAD simulation is performed to validate the turn-on characteristics of the Schottky electrode region and the improved Ron. Electric-field analysis in the off-state is conducted for both the OD and HSD devices. Furthermore, a record breakdown voltage (BV) of 2.8 kV is achieved, which is superior to the 1.7 kV of the compared OD device. Our results show that the proposed HSD contact with a further optimized design can be a promising drain electrode scheme for α-Ga2O3 power MOSFETs.

2.
Sci Adv ; 9(38): eadh9889, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738348

RESUMO

A neuromuscular junction (NMJ) is a particularized synapse that activates muscle fibers for macro-motions, requiring more energy than computation. Emulating the NMJ is thus challenging owing to the need for both synaptic plasticity and high driving power to trigger motions. Here, we present an artificial NMJ using CuInP2S6 (CIPS) as a gate dielectric integrated with an AlGaN/GaN-based high-electron mobility transistor (HEMT). The ferroelectricity of the CIPS is coupled with the two-dimensional electron gas channel in the HEMT, providing a wide programmable current range of 6 picoampere per millimeter to 5 milliampere per millimeter. The large output current window of the CIPS/GaN ferroelectric HEMT (FeHEMT) allows for amplifier-less actuation, emulating the biological NMJ functions of actuation and synaptic plasticity. We also demonstrate the emulation of biological oculomotor dynamics, including in situ object tracking and enhanced stimulus responses, using the fabricated artificial NMJ. We believe that the CIPS/GaN FeHEMT offers a promising pathway for bioinspired robotics and neuromorphic vision.

3.
ACS Nano ; 17(8): 7695-7704, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37014204

RESUMO

Significant effort for demonstrating a gallium nitride (GaN)-based ferroelectric metal-oxide-semiconductor (MOS)-high-electron-mobility transistor (HEMT) for reconfigurable operation via simple pulse operation has been hindered by the lack of suitable materials, gate structures, and intrinsic depolarization effects. In this study, we have demonstrated artificial synapses using a GaN-based MOS-HEMT integrated with an α-In2Se3 ferroelectric semiconductor. The van der Waals heterostructure of GaN/α-In2Se3 provides a potential to achieve high-frequency operation driven by a ferroelectrically coupled two-dimensional electron gas (2DEG). Moreover, the semiconducting α-In2Se3 features a steep subthreshold slope with a high ON/OFF ratio (∼1010). The self-aligned α-In2Se3 layer with the gate electrode suppresses the in-plane polarization while promoting the out-of-plane (OOP) polarization of α-In2Se3, resulting in a steep subthreshold slope (10 mV/dec) and creating a large hysteresis (2 V). Furthermore, based on the short-term plasticity (STP) characteristics of the fabricated ferroelectric HEMT, we demonstrated reservoir computing (RC) for image classification. We believe that the ferroelectric GaN/α-In2Se3 HEMT can provide a viable pathway toward ultrafast neuromorphic computing.

4.
Micromachines (Basel) ; 12(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34945290

RESUMO

AlGaN/GaN metal-oxide semiconductor high electron mobility transistors (MOS-HEMTs) with undoped ferroelectric HfO2 have been investigated. Annealing is often a critical step for improving the quality of as-deposited amorphous gate oxides. Thermal treatment of HfO2 gate dielectric, however, is known to degrade the oxide/nitride interface due to the formation of Ga-containing oxide. In this work, the undoped HfO2 gate dielectric was spike-annealed at 600 °C after the film was deposited by atomic layer deposition to improve the ferroelectricity without degrading the interface. As a result, the subthreshold slope of AlGaN/GaN MOS-HEMTs close to 60 mV/dec and on/off ratio>109 were achieved. These results suggest optimizing the HfO2/nitride interface can be a critical step towards a low-loss high-power switching device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...