Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37297548

RESUMO

The speciation of volatile organic compounds (VOCs) emitted from personal care products (PCPs) is complex and contributes to poor air quality and health risks to users via the inhalation exposure pathway. Detailed VOC emission profiles were generated for 26 sunscreen products; consequently, variability was observed between products, even though they were all designed for the same purpose. Some were found to contain fragrance compounds not labelled on their ingredients list. Five contaminant VOCs were identified (benzene, toluene, ethylbenzene, o-xylene, and p-xylene); headspace sampling of an additional 18 randomly selected products indicated that ethanol originating from fossil petroleum was a potential source. The gas phase emission rates of the VOCs were quantified for 15 of the most commonly emitted species using SIFT-MS. A wide range of emission rates were observed between the products. Usage estimates were made based on the recommended dose per body surface area, for which the total mass of VOCs emitted from one full-body application dose was in the range of 1.49 × 103-4.52 × 103 mg and 1.35 × 102-4.11 × 102 mg for facial application (men aged 16+; children aged 2-4). Depending on age and sex, an estimated 9.8-30 mg of ethanol is inhaled from one facial application of sunscreen.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Humanos , Masculino , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Etanol , Exposição por Inalação , Protetores Solares , Compostos Orgânicos Voláteis/análise , Feminino , Pré-Escolar , Adolescente
2.
Environ Sci Technol ; 57(21): 8026-8034, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191998

RESUMO

There are widespread policy assumptions that the phase-out of gasoline and diesel internal combustion engines will over time lead to much reduced emissions of Volatile Organic Compounds (VOCs) from road transport and related fuels. However, the use of real-world emissions measurements from a new mobile air quality monitoring station demonstrated a large underestimation of alcohol-based species in road transport emissions inventories. Scaling of industry sales statistics enabled the discrepancy to be attributed to the use of ancillary solvent products such as screenwash and deicer which are not included in internationally applied vehicle emission methodologies. A fleet average nonfuel nonexhaust VOC emission factor of 58 ± 39 mg veh-1 km-1 was calculated for the missing source, which is greater than the total of all VOCs emitted from vehicle exhausts and their associated evaporative fuel losses. These emissions are independent of the vehicle energy/propulsion system and therefore applicable to all road vehicle types including those with battery-electric powertrains. In contrast to predictions, vehicle VOC emissions may actually increase given a predicted growth in total vehicle kilometers driven in a future electrified fleet and will undergo a complete VOC respeciation due to the source change.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Emissões de Veículos/análise , Poluição do Ar/análise , Gasolina/análise
3.
Indoor Air ; 32(1): e12948, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816489

RESUMO

Volatile organic compound (VOC) emissions from personal care products (PCPs) contribute to poor indoor air quality. Exposure to indoor VOCs is typically determined through ambient concentration measurements; however, for some PCPs the proximity of use to the nose and mouth may lead to disproportionately large inhaled doses. In this paper, we quantify emission factors for six common PCP ingredient VOCs (ethanol, 2-propanol, benzyl alcohol, 1,3-butanediol, t-butyl alcohol, and the grouping of monoterpenes as limonene) from 16 facial day-moisturizers using headspace analysis and selected ion flow-tube mass spectrometry. A wide range of emissions rates were observed across the range of products tested (e.g., ethanol 3.3-6.9 × 102  µg s-1  g[product]-1 , limonene 1.3 × 10-1 -4.1 × 10-1  µg s-1  g[product]-1 ). We use a mannequin head with reconstructed nose and mouth airways to sample VOCs from facial application at typical respiration volumes. A single facial application of moisturizer can lead to a much larger inhaled VOC dose than would be inhaled from typical indoor ambient air over 24 h (e.g., limonene up to ~×16 greater via facial application, ethanol up to ~×300). Emissions from facially applied PCPs typically decayed to background concentrations over periods ranging from 5 to 150 min.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Cosméticos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Cosméticos/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos Voláteis/análise
4.
Indoor Air ; 31(4): 1281-1291, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33615569

RESUMO

An increasing fraction of volatile organic compounds (VOC) emissions come from the domestic use of solvents, contained within myriad commonplace consumer products. Emission rates are often poorly characterized and depend significantly on individual behavior and specific product formulation and usage. Time-concentration profiles of volatile organic compounds (VOCs) arising from the use of a representative selection of personal care products (PCPs) during showering are generated, and person-to-person variability in emissions calculated. A panel of 18 participants used a standardized set of products, dosages, and application times during showering in a controlled indoor bathroom setting. Proton transfer mass spectrometry was used to measure the in-room VOC evolution of limonene (representing the sum of monoterpenes), benzyl alcohol, and ethanol. The release of VOCs had reproducible patterns between users, but noticeable variations in absolute peak concentrations, despite identical amounts of material being used. The amounts of VOC emitted to air for one showering activity were as follows: limonene (1.77 mg ± 42%), benzyl alcohol (1.07 mg ± 41%), and ethanol (0.33 mg ± 78%). Real-world emissions to air were between 1.3 and 11 times lower than bottom-up estimates based on dynamic headspace measurements of product emissions rates, likely a result of PCPs being washed away before VOC evaporation could occur.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Cosméticos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Produtos Domésticos , Humanos , Compostos Orgânicos Voláteis/análise
5.
Indoor Air ; 30(3): 459-472, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32034823

RESUMO

Volatile organic compounds (VOCs) emitted from personal care products (PCPs) can affect indoor air quality and outdoor air quality when ventilated. In this paper, we determine a set of simplified VOC species profiles and emission rates for a range of non-aerosol PCPs. These have been constructed from individual vapor analysis from 36 products available in the UK, using equilibrium headspace analysis with selected-ion flow-tube mass spectrometry (SIFT-MS). A simplified speciation profile is created based on the observations, comprising four alcohols, two cyclic volatile siloxanes, and monoterpenes (grouped as limonene). Estimates are made for individual unit-of-activity VOC emissions for dose-usage of shampoos, shower gel, conditioner, liquid foundation, and moisturizer. We use these values as inputs to the INdoor air Detailed Chemical Model (INDCM) and compare results against real-world case-study experimental data. Activity-based emissions are then scaled based on plausible usage patterns to estimate the potential scale of annual per-person emissions for each product type (eg, 2 g limonene person-1  yr-1 from shower gels). Annual emissions from non-aerosol PCPs for the UK are then calculated (decamethylcyclopentasiloxane 0.25 ktonne yr-1 and limonene 0.15 ktonne yr-1 ) and these compared with the UK National Atmospheric Emissions Inventory estimates for non-aerosol cosmetics and toiletries.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Cosméticos/análise , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , Produtos Domésticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...