Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(47): 56014-56024, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783545

RESUMO

The catalyst layer's high durability is essential in commercializing polymer electrolyte membrane fuel cells (PEMFCs), particularly for vehicle applications, because their frequent on/off operation can induce carbon corrosion, which affects surface properties and morphological characteristics of the carbon and results in aggregation and detachment of Pt nanoparticles on the carbon surface. Herein, to address the carbon corrosion problem while delivering a high-performance PEMFC, polydimethylsiloxane (PDMS) with high gas permeability, chemical stability, and hydrophobicity was employed to protect the catalyst layer from carbon corrosion and improve the mass transport. Because the catalyst slurry using alcohol-based solvents showed low compatibility with nonpolar solvents of the PDMS solution, a parallel two-nozzle system with separated solution reservoirs was developed by modifying a conventional three-dimensional printing machine. To determine the optimal PDMS amount in the cathode catalyst layer, PDMS solution concentration was varied by quantitatively controlling the PDMS amount coated on the electrode layer. Finally, the PEMFC with the PDMS-modified cathode of 0.1 mgPDMS cm-2 loading showed enhanced durability due to increased electrochemical surface and maximum power density by 37.2 and 21.7%, respectively, after the accelerated stress test. Furthermore, an improvement in the initial performance from enhanced water management was observed compared to those of PEMFCs with a conventional electrode.

2.
ACS Appl Mater Interfaces ; 13(1): 806-815, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33393284

RESUMO

The development of a novel approach to achieve high-performance and durable fuel cells is imperative for the further commercialization of proton-exchange (or polymer electrolyte) membrane fuel cells (PEMFCs). In this work, multifunctional dendritic Nafion/CeO2 structures were introduced onto the cathode side of the interface between a membrane and a catalyst layer through electrospray deposition. The dendritic structures enlarged the interfacial contact area between the membrane and the catalyst layer and formed microscale voids between the catalyst layer and gas diffusion medium. This improved the PEMFC performance through the effective utilization of the catalyst and enhanced mass transport of the reactant. Especially, under low-humidity conditions, the hygroscopic effect of CeO2 nanoparticles also boosted the power density of PEMFCs. In addition to the beneficial effects on the efficiency of the PEMFC, the incorporation of CeO2, widely known as a radical scavenger, effectively mitigated the free-radical attack on the outer surface of the membrane, where chemical degradation is initiated by radicals formed during PEMFC operation. These multifunctional effects of the dendritic Nafion/CeO2 structures on PEMFC performance and durability were investigated using various in situ and ex situ measurement techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA