Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1384280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770275

RESUMO

Introduction: The trabecular network is perceived as a collection of interconnected plate- (P) and rod-like (R) elements. Previous research has highlighted how these elements and their connectivity influence the mechanical properties of bone, yet further work is required to elucidate better the deeply interconnected nature of the trabecular network with distinct element formations conducting forces per their mechanical boundary conditions. Within this network, forces act through elements: a rod or plate with force applied to one end will transmit this force to a component connected to the other end, defining the boundary conditions for the loading of each element. To that end, this study has two aims: First, to investigate the connectivity of individually segmented elements of trabecular bone with respect to their local boundary conditions as defined by the surrounding trabecular network and linking them directly to the bone's overall mechanical response during loading using a mathematical graph model of the plate and rod (PR) Network. Second, we use this model to quantify side artifacts, a known artifact when testing an excised specimen of trabecular bone, where vertical trabeculae lose their load-bearing capacity due to a loss of connectivity, ultimately resulting in a change of the trabecular network topology. Resuts: Connected elements derived from our model predicted apparent elastic modulus by fitting a linear regression (R 2 = 0.81). In comparison, prediction using conventional bone volume fraction results in a lower accuracy (R 2 = 0.72), demonstrating the ability of the PR Network to estimate compressive elastic modulus independent of specimen size or loading boundary condition. Discussion: PR Network models are a novel approach to describing connectivity within the trabecular network and incorporating mechanical boundary conditions within the morphological analysis, thus enabling the study of intrinsic material properties of trabecular bone. Ultimately, PR Network models may be an early predictor or provide further insights into osteo-degenerative diseases.

2.
Spine J ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704096

RESUMO

BACKGROUND CONTEXT: The opioid epidemic is a public health crisis affecting spine care and pain management. Medical marijuana is a potential non-opioid analgesic yet to be studied in the surgical setting since its effects on bone healing are not fully understood. Studies have demonstrated analgesic and potentially osteoinductive properties of cannabinoids with endocannabinoid receptor expression in bone tissue. PURPOSE: We hypothesize that tetrahydrocannabinol (THC) and cannabidiol (CBD) will not decrease bone healing in spinal fusion. STUDY DESIGN: Seventy-eight adult Sprague-Dawley rats were used for this study. Utilizing allogenic bone grafts (6 donor rats), posterolateral inter-transverse lumbar fusion at the L4-L5 level was performed. The animals were equally divided into four treatment groups, each receiving 0.1 ml intraperitoneal injections weekly as follows: placebo (saline), 5 mg/kg THC, 5 mg/kg CBD, and a combination of 5 mg/kg THC and 5mg/kg CBD (Combo). METHODS: Callus tissue was harvested 2- and 8-weeks post-surgery for qPCR assessment to quantify changes in the expression of osteogenic genes. Manual palpation was done to assess the strength of the L4-L5 arthrodesis on all rats. µCT image-based callus analysis and histology were performed. One-way ANOVA followed by post hoc comparisons was performed. RESULTS: µCT demonstrated no significant differences. Treatment groups had slightly increased bone volume and density compared to control. qPCR at two weeks indicated downregulated RANKL/OPG ratios skewing towards osteogenesis in the CBD group, with the THC and CBD+THC groups demonstrating a downward trend (p>.05). ALPL, BMP4, and SOST were significantly higher in the CBD group, with CTNNB1 and RUNX2 also showing an upregulating trend. The CBD group showed elevation in Col1A1 and MMP13. Data at eight weeks showed ALPL, RUNX2, BMP4, and SOST were downregulated for all treatment groups. In the CBD+THC group, RANK, RANKL, and OPG were downregulated. OPG downregulation reached significance for the THC and CBD+THC group compared to saline. Interestingly, the RANKL/OPG ratio showed upregulation in the CBD and CBD+THC groups. RANKL showed upregulation in the CBD group. At 2 and 8 weeks, the CBD treatment group showed superior histological progression, increasing between time points. CONCLUSION: This study demonstrates that CBD and THC have no adverse effect on bone healing and the rate of spinal fusion in rats. Osteogenic factors were upregulated in the CBD-treated groups at two weeks, which indicates a potential for bone regeneration. In this group, compared to control, the RANKL/OPG ratio at the early healing phase demonstrates the inhibition of osteoclast differentiation, enhancing bone formation. Interestingly, it shows promoted osteoclast differentiation at the later healing phase, enhancing bone remodeling. This aligns with the physiological expectation of a lower ratio in the early phases and a higher ratio in the later remodeling phases. CLINICAL SIGNIFICANCE: CBD and THC showed no inhibitory effects on bone healing in a spinal fusion model. Moreover, histologic and gene expression analysis demonstrated that CBD may, in fact, enhance bone healing. Further research is needed to confirm the safe usage of THC and CBD in the post-operative setting following spinal fusions.

3.
ACS Biomater Sci Eng ; 10(4): 2607-2615, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38478959

RESUMO

Conventional thinking when designing biodegradable materials and devices is to tune the intrinsic properties and morphological features of the material to regulate their degradation rate, modulating traditional factors such as molecular weight and crystallinity. Since regenerated silk protein can be directly thermoplastically molded to generate robust dense silk plastic-like materials, this approach afforded a new tool to control silk degradation by enabling the mixing of a silk-degrading protease into bulk silk material prior to thermoplastic processing. Here we demonstrate the preparation of these silk-based devices with embedded silk-degrading protease to modulate the degradation based on the internal presence of the enzyme to support silk degradation, as opposed to the traditional surface degradation for silk materials. The degradability of these silk devices with and without embedded protease XIV was assessed both in vitro and in vivo. Ultimately, this new process approach provides direct control of the degradation lifetime of the devices, empowered through internal digestion via water-activated proteases entrained and stabilized during the thermoplastic process.


Assuntos
Materiais Biocompatíveis , Seda , Peptídeo Hidrolases , Água
4.
Front Bioeng Biotechnol ; 12: 1327094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515627

RESUMO

Introduction: Tendinopathy is a degenerative condition resulting from tendons experiencing abnormal levels of multi-scale damage over time, impairing their ability to repair. However, the damage markers associated with the initiation of tendinopathy are poorly understood, as the disease is largely characterized by end-stage clinical phenotypes. Thus, this study aimed to evaluate the acute tendon responses to successive fatigue bouts of tendon overload using an in vivo passive ankle dorsiflexion system. Methods: Sprague Dawley female rats underwent fatigue overloading to their Achilles tendons for 1, 2, or 3 loading bouts, with two days of rest in between each bout. Mechanical, structural, and biological assays were performed on tendon samples to evaluate the innate acute healing response to overload injuries. Results: Here, we show that fatigue overloading significantly reduces in vivo functional and mechanical properties, with reductions in hysteresis, peak stress, and loading and unloading moduli. Multi-scale structural damage on cellular, fibril, and fiber levels demonstrated accumulated micro-damage that may have induced a reparative response to successive loading bouts. The acute healing response resulted in alterations in matrix turnover and early inflammatory upregulations associated with matrix remodeling and acute responses to injuries. Discussion: This work demonstrates accumulated damage and acute changes to the tendon healing response caused by successive bouts of in vivo fatigue overloads. These results provide the avenue for future investigations of long-term evaluations of tendon overload in the context of tendinopathy.

5.
J Magn Reson Imaging ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526032

RESUMO

BACKGROUND: Osteoporosis (OP) and osteomalacia (OM) are metabolic bone diseases characterized by mineral and matrix density changes. Quantitative bone matrix density differentiates OM from OP. MRI is a noninvasive and nonionizing imaging technique that can measure bone matrix density quantitatively in ex vivo and in vivo. PURPOSE: To demonstrate water + fat suppressed 1H MRI to compute bone matrix density in ex vivo rat femurs in the preclinical model. STUDY TYPE: Prospective. ANIMAL MODEL: Fifteen skeletally mature female Sprague-Dawley rats, five per group (normal, ovariectomized (OVX), partially nephrectomized/vitamin D (Vit-D) deficient), 250-275 g, ∼15 weeks old. FIELD STRENGTH/SEQUENCE: 7T, zero echo time sequence with water + fat (VAPOR) suppression capability, µCT imaging, and gravimetric measurements. ASSESSMENT: Cortical and trabecular bone segments from normal and disease models were scanned in the same coil along with a dual calibration phantom for quantitative assessment of bone matrix density. STATISTICAL TESTS: ANOVA and linear regression were used for data analysis, with P-values <0.05 statistically significant. RESULTS: The MRI-derived three-density PEG pellet densities have a strong linear relationship with physical density measures (r2 = 0.99). The Vit-D group had the lowest bone matrix density for cortical bone (0.47 ± 0.16 g cm-3), whereas the OVX had the lowest bone matrix density for trabecular bone (0.26 ± 0.04 g cm-3). Gravimetry results confirmed these MRI-based observations for Vit-D cortical (0.51 ± 0.07 g cm-3) and OVX trabecular (0.26 ± 0.03 g cm-3) bone groups. DATA CONCLUSION: Rat femur images were obtained using a modified pulse sequence and a custom-designed double-tuned (1H/31P) transmit-receive solenoid-coil on a 7T preclinical MRI scanner. Phantom experiments confirmed a strong linear relation between MRI-derived and physical density measures and quantitative bone matrix densities in rat femurs from normal, OVX, and Vit-D deficient/partially nephrectomized animals were computed. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

6.
J Vis Exp ; (205)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497634

RESUMO

Tendinopathy is a chronic tendon condition that results in pain and loss of function and is caused by repeated overload of the tendon and limited recovery time. This protocol describes a testing system that cyclically applies mechanical loads via passive dorsiflexion to the rat Achilles tendon. The custom-written code consists of pre- and post-cyclic loading measurements to assess the effects of the loading protocol along with the feedback control-based cyclic fatigue loading regimen. We used 25 Sprague-Dawley rats for this study, with 5 rats per group receiving either 500, 1,000, 2,000, 3,600, or 7,200 cycles of fatigue loads. The percentage differences between the pre- and post-cyclic loading measurements of the hysteresis, peak stress, and loading and unloading moduli were calculated. The results demonstrate that the system can induce varying degrees of damage to the Achilles tendon based on the number of loads applied. This system offers an innovative approach to apply quantified and physiological varying degrees of cyclic loads to the Achilles tendon for an in vivo model of fatigue-induced overuse tendon injury.


Assuntos
Tendão do Calcâneo , Tendinopatia , Animais , Ratos , Ratos Sprague-Dawley , Tornozelo , Cultura , Tendinopatia/etiologia
7.
Bone ; 180: 116996, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38154764

RESUMO

BACKGROUND: Osteoporosis is characterized by low bone mineral density (BMD), which predisposes individuals to frequent fragility fractures. Quantitative BMD measurements can potentially help distinguish bone pathologies and allow clinicians to provide disease-relieving therapies. Our group has developed non-invasive and non-ionizing magnetic resonance imaging (MRI) techniques to measure bone mineral density quantitatively. Dual-energy X-ray Absorptiometry (DXA) is a clinically approved non-invasive modality to diagnose osteoporosis but has associated disadvantages and limitations. PURPOSE: Evaluate the clinical feasibility of phosphorus (31P) MRI as a non-invasive and non-ionizing medical diagnostic tool to compute bone mineral density to help differentiate between different metabolic bone diseases. MATERIALS AND METHODS: Fifteen ex-vivo rat bones in three groups [control, ovariectomized (osteoporosis), and vitamin-D deficient (osteomalacia - hypo-mineralized) were scanned to compute BMD. A double-tuned (1H/31P) transmit-receive single RF coil was custom-designed and in-house-built with a better filling factor and strong radiofrequency (B1) field to acquire solid-state 31P MR images from rat femurs with an optimum signal-to-noise ratio (SNR). Micro-computed tomography (µCT) and gold-standard gravimetric analyses were performed to compare and validate MRI-derived bone mineral densities. RESULTS: Three-dimensional 31P MR images of rat bones were obtained with a zero-echo-time (ZTE) sequence with 468 µm spatial resolution and 12-17 SNR on a Bruker 7 T Biospec having multinuclear capability. BMD was measured quantitatively on cortical and trabecular bones with a known standard reference. A strong positive correlation (R = 0.99) and a slope close to 1 in phantom measurements indicate that the densities measured by 31P ZTE MRI are close to the physical densities in computing quantitative BMD. The 31P NMR properties (resonance linewidth of 4 kHz and T1 of 67 s) of ex-vivo rat bones were measured, and 31P ZTE imaging parameters were optimized. The BMD results obtained from MRI are in good agreement with µCT and gravimetry results. CONCLUSION: Quantitative measurements of BMD on ex-vivo rat femurs were successfully conducted on a 7 T preclinical scanner. This study suggests that quantitative measurements of BMD are feasible on humans in clinical MRI with suitable hardware, RF coils, and pulse sequences with optimized parameters within an acceptable scan time since human femurs are approximately ten times larger than rat femurs. As MRI provides quantitative in-vivo data, various systemic musculoskeletal conditions can be diagnosed potentially in humans.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Ratos , Animais , Humanos , Microtomografia por Raio-X , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Osteoporose/diagnóstico por imagem , Absorciometria de Fóton , Fósforo
8.
Arthrosc Sports Med Rehabil ; 6(1): 100815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149088

RESUMO

Purpose: This study aims to determine the overall incidence of venous thromboembolism (VTE) following shoulder arthroscopy and to define potential risk factors associated with its development that may help define guidelines for the use of thromboprophylaxis. Methods: A systematic review was performed using PubMed, Embase, Web of Science, CINAHL, and Cochrane databases per PRISMA guidelines. The search terms consisted of variations of "Venous Thromboembolism" and "Shoulder Arthroscopy." Information regarding arthroscopy indication, risk factors, outcomes, and patient demographics was recorded and analyzed, and pooled odds ratios were reported for each variable. Results: Six hundred eighty-five articles were identified in the initial search, and 35 articles reported DVT, PE, or VTE incidence following shoulder arthroscopy. Seventeen nonoverlapping articles with a unique patient population incidence rates. Four articles were then used for subgroup meta-analysis. The incidence rate of VTE was 0.24%, ranging from 0.01% to 5.7%. BMI >30 (OR = 1.46; 95% CI = [1.22, 1.74]; I2 = 0%) and hypertension (OR = 1.64; 95% CI = [1.03, 2.6]; I2 = 75%) were significant risk factors (P < .05) for developing VTE following shoulder arthroscopy. Diabetes (OR = 1.2; 95% CI = [0.97, 1.48]; I2 = 0%), insulin-dependent diabetes (OR = 5.58; 95% CI = [0.12, 260.19]; I2 = 85%), smoking (OR = 1.04; 95% CI = [0.79, 1.37]; I2 = 12%), male sex (OR = 0.95; 95% CI = [0.49, 1.85]; I2 = 86%) and age over 65 (OR = 4.3; 95% CI = [0.25, 72.83]; I2 = 85%) were not associated with higher VTE risk. Conclusion: The VTE incidence following shoulder arthroscopy is low at 0.24%. Patients with BMI >30 and hypertension are at a higher risk for VTE after shoulder arthroscopy. Level of Evidence: Level IV, systematic review and meta-analysis of Level I-IV studies.

9.
J Biomech ; 156: 111664, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302164

RESUMO

Tendinopathy is thought to be caused by repeated overload of the tendon with insufficient recovery time, leading to an inadequate healing response and incomplete recovery of preinjury material strength and function. The etiology of tendinopathy induced by mechanical load is being explored with a variety of mechanical load scenarios in small animals. This study establishes a testing system that applies passive ankle dorsiflexion to a rat hindlimb, estimates the force applied to the tendon during cyclic loading and enables the assessment of subsequent structural and biological changes. We demonstrated that the system had no drift in the applied angle, and the registered maximum angle and torque inputs and outputs were consistent between tests. We showed that cyclic loading decreased hysteresis and loading and unloading moduli with increasing cycles applied to the tendon. Histology showed gross changes to tendon structure. This work establishes a system for passively loading the rat Achilles tendon in-vivo in a physiological manner, facilitating future studies that will explore how mechanics, structure, and biology are altered by mechanical repetitive loading.


Assuntos
Tendão do Calcâneo , Tendinopatia , Ratos , Animais , Tendão do Calcâneo/fisiologia , Tornozelo , Articulação do Tornozelo/fisiologia , Fenômenos Mecânicos
10.
J Cannabis Res ; 5(1): 24, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340498

RESUMO

BACKGROUND: Substance administration to laboratory animals necessitates careful consideration and planning in order to enhance agent distribution while reducing any harmful effects from the technique. There are numerous methods for administering cannabinoids; however, several parameters must be considered, including delivery frequency, volume of administration, vehicle, and the level of competence required for staff to use these routes properly. There is a scarcity of information about the appropriate delivery method for cannabinoids in animal research, particularly those that need the least amount of animal manipulation during the course of the investigation. This study aims to assess the feasibility and potential side effects of intraperitoneal and subcutaneous injection of CBD and THC using propylene glycol or Kolliphor in animal models. By evaluating the ease of use and histopathological side effects of these solvents, this study intends to help researchers better understand an accessible long-term delivery route of administration in animal experiments while minimizing the potential confounding effects of the delivery method on the animal. METHODS: Intraperitoneal and subcutaneous methods of systemic cannabis administration were tested in rat models. Subcutaneous delivery via needle injection and continuous osmotic pump release were evaluated using propylene glycol or Kolliphor solvents. In addition, the use of a needle injection and a propylene glycol solvent for intraperitoneal (IP) administration was investigated. Skin histopathological changes were evaluated following a trial of subcutaneous injections of cannabinoids utilizing propylene glycol solvent. DISCUSSION: Although IP delivery of cannabinoids with propylene glycol as solvent is a viable method and is preferable to oral treatment in order to reduce gastrointestinal tract degradation, it has substantial feasibility limitations. We conclude that subcutaneous delivery utilizing osmotic pumps with Kolliphor as a solvent provides viable and consistent route of administration for long-term systemic cannabinoid delivery in the preclinical context.

11.
J Digit Imaging ; 36(3): 869-878, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36627518

RESUMO

The purpose of this study was to pair computed tomography (CT) imaging and machine learning for automated bone tumor segmentation and classification to aid clinicians in determining the need for biopsy. In this retrospective study (March 2005-October 2020), a dataset of 84 femur CT scans (50 females and 34 males, 20 years and older) with definitive histologic confirmation of bone lesion (71% malignant) were leveraged to perform automated tumor segmentation and classification. Our method involves a deep learning architecture that receives a DICOM slice and predicts (i) a segmentation mask over the estimated tumor region, and (ii) a corresponding class as benign or malignant. Class prediction for each case is then determined via majority voting. Statistical analysis was conducted via fivefold cross validation, with results reported as averages along with 95% confidence intervals. Despite the imbalance between benign and malignant cases in our dataset, our approach attains similar classification performances in specificity (75%) and sensitivity (79%). Average segmentation performance attains 56% Dice score and reaches up to 80% for an image slice in each scan. The proposed approach establishes the first steps in developing an automated deep learning method on bone tumor segmentation and classification from CT imaging. Our approach attains comparable quantitative performance to existing deep learning models using other imaging modalities, including X-ray. Moreover, visual analysis of bone tumor segmentation indicates that our model is capable of learning typical tumor characteristics and provides a promising direction in aiding the clinical decision process for biopsy.


Assuntos
Neoplasias Ósseas , Tomografia Computadorizada por Raios X , Masculino , Feminino , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Aprendizado de Máquina , Neoplasias Ósseas/diagnóstico por imagem , Biópsia , Processamento de Imagem Assistida por Computador/métodos
12.
Sci Transl Med ; 14(666): eabo3357, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223449

RESUMO

Substantial advances in biotherapeutics are distinctly lacking for musculoskeletal diseases. Musculoskeletal diseases are biomechanically complex and localized, highlighting the need for novel therapies capable of addressing these issues. All frontline treatment options for arthrofibrosis, a debilitating musculoskeletal disease, fail to treat the disease etiology-the accumulation of fibrotic tissue within the joint space. For millions of patients each year, the lack of modern and effective treatment options necessitates surgery in an attempt to regain joint range of motion (ROM) and escape prolonged pain. Human relaxin-2 (RLX), an endogenous peptide hormone with antifibrotic and antifibrogenic activity, is a promising biotherapeutic candidate for musculoskeletal fibrosis. However, RLX has previously faltered through multiple clinical programs because of pharmacokinetic barriers. Here, we describe the design and in vitro characterization of a tailored drug delivery system for the sustained release of RLX. Drug-loaded, polymeric microparticles released RLX over a multiweek time frame without altering peptide structure or bioactivity. In vivo, intraarticular administration of microparticles in rats resulted in prolonged, localized concentrations of RLX with reduced systemic drug exposure. Furthermore, a single injection of RLX-loaded microparticles restored joint ROM and architecture in an atraumatic rat model of arthrofibrosis with clinically derived end points. Finally, confirmation of RLX receptor expression, RXFP1, in multiple human tissues relevant to arthrofibrosis suggests the clinical translational potential of RLX when administered in a sustained and targeted manner.


Assuntos
Doenças Musculoesqueléticas , Relaxina , Animais , Preparações de Ação Retardada , Fibrose , Humanos , Doenças Musculoesqueléticas/tratamento farmacológico , Ratos , Relaxina/metabolismo , Relaxina/uso terapêutico
13.
BMC Musculoskelet Disord ; 23(1): 725, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906570

RESUMO

Arthrofibrosis, or rigid contracture of major articular joints, is a significant morbidity of many neurodegenerative disorders. The pathogenesis depends on the mechanism and severity of the precipitating neuromuscular disorder. Most neuromuscular disorders, whether spastic or hypotonic, culminate in decreased joint range of motion. Limited range of motion precipitates a cascade of pathophysiological changes in the muscle-tendon unit, the joint capsule, and the articular cartilage. Resulting joint contractures limit functional mobility, posing both physical and psychosocial burdens to patients, economic burdens on the healthcare system, and lost productivity to society. This article reviews the pathophysiology of arthrofibrosis in the setting of neuromuscular disorders. We describe current non-surgical and surgical interventions for treating arthrofibrosis of commonly affected joints. In addition, we preview several promising modalities under development to ameliorate arthrofibrosis non-surgically and discuss limitations in the field of arthrofibrosis secondary to neuromuscular disorders.


Assuntos
Contratura , Artropatias , Contratura/complicações , Contratura/terapia , Fibrose , Humanos , Cápsula Articular/patologia , Artropatias/etiologia , Artropatias/patologia , Artropatias/terapia , Articulações/patologia , Articulação do Joelho/cirurgia , Amplitude de Movimento Articular/fisiologia
14.
Aging Cell ; 20(9): e13457, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34453483

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare accelerated aging disorder most notably characterized by cardiovascular disease and premature death from myocardial infarction or stroke. The majority of cases are caused by a de novo single nucleotide mutation in the LMNA gene that activates a cryptic splice donor site, resulting in production of a toxic form of lamin A with a 50 amino acid internal deletion, termed progerin. We previously reported the generation of a transgenic murine model of progeria carrying a human BAC harboring the common mutation, G608G, which in the single-copy state develops features of HGPS that are limited to the vascular system. Here, we report the phenotype of mice bred to carry two copies of the BAC, which more completely recapitulate the phenotypic features of HGPS in skin, adipose, skeletal, and vascular tissues. We further show that genetic reduction of the mechanistic target of rapamycin (mTOR) significantly extends lifespan in these mice, providing a rationale for pharmacologic inhibition of the mTOR pathway in the treatment of HGPS.


Assuntos
Modelos Animais de Doenças , Longevidade , Progéria/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Serina-Treonina Quinases TOR/genética
15.
Arch Osteoporos ; 16(1): 29, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33575883

RESUMO

PURPOSE: Hip fracture is a severe complication of osteoporosis and is associated with a significant healthcare burden worldwide. This meta-analysis explores the association between combined multivitamin use and hip fracture risk. Our results provide more patient-centered insight into the impact of supplement use on osteoporosis outcomes. METHODS: We searched three online databases in August 2019 and included studies that reported on multivitamin use in patients with osteoporotic hip fractures. The inclusion criteria were (1) adult patients with osteoporotic hip fractures, (2) availability of full-text articles in English, and (3) at least 1 year of follow-up. No suitable randomized controlled trials could be identified for inclusion in the analysis. The quality of the included studies was assessed using the Newcastle-Ottawa Scale (NOS). RESULTS: Eight studies containing 80,148 subjects in total were included in this study. Among these, 4237 cases of fragility hip fracture were reported. The average age was 69±5.3 years, and 21% of subjects were male. Multivitamin use was found to be significantly associated with a lower risk of sustaining a fragility hip fracture (OR 0.49, 95%CI: 0.32-0.77). The Begg and Mazumdar test and funnel plot indicated that no significant publication bias was present. CONCLUSION: Combined multivitamins are amongst the most widely used supplements and are often preferred over single vitamins. Our meta-analysis indicates that multivitamin use is significantly protective against osteoporotic hip fracture. In the future, randomized controlled trials should be performed to establish multivitamins as effective preventative measures for this injury.


Assuntos
Fraturas do Quadril , Osteoporose , Fraturas por Osteoporose , Idoso , Suplementos Nutricionais , Fraturas do Quadril/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose/epidemiologia , Fraturas por Osteoporose/epidemiologia , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...