Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Prot ; 87(2): 100215, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38182094

RESUMO

Lytic bacteriophages are promising biocontrol agents against pathogenic bacteria for food and therapeutic applications. Investigating the feasibility of combining phage and physical lethal agents, such as heat, as an effective hurdle combination could lead to beneficial applications. The current research was initiated to compare the thermal inactivation kinetics of a lytic phage (Escherichia phage OSYSP) and its host (Shiga toxin-producing Escherichia coli O157:H7 EDL933), considering they have different critical thermal targets in their structures. To provide a basis for comparison, thermal inactivation kinetics were determined on suspensions of these agents in buffered peptone water using a thermally controlled circulating water bath. Results showed that the bacteriophage virions have a remarkable heat resistance (p < 0.05) compared to their host cells. The D-values of the populations of phage (PFU/mL) and EDL933 strain (CFU/mL) were 166.7 and 7.3 min at 55°C, compared to 44.4 and 0.3 min at 60°C, respectively. Additionally, D-values were significantly (p < 0.05) more influenced by temperature changes in the case of E. coli O157:H7 EDL933 (z-value 3.7°C) compared to that for phage OSYSP (z-value 7.7°C). When the phage suspension was heat-treated in a thermal cycler instead of a water bath, no significant differences between the two treatment procedures (p > 0.05) in estimating virus D- and z-values were observed. Based on these findings, it may be feasible to combine phage OSYSP with mild heat during processing of food to selectively inactivate E. coli O157:H7 EDL933 and subsequently maintain product safety during storage by the surviving phage population; however, the feasibility of this application needs to be investigated. Additionally, the relatively heat-resistant phage OSYSP could qualify as a biological indicator to validate thermal treatments of minimally processed foods in which E. coli O157:H7 EDL933 is the pathogen-of-concern.


Assuntos
Bacteriófagos , Escherichia coli O157 , Bacteriófagos/fisiologia , Escherichia , Escherichia coli O157/fisiologia , Microbiologia de Alimentos , Cinética , Água
2.
Sci Rep ; 13(1): 10706, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400589

RESUMO

Bacteriophage and gaseous ozone are evolving as meritorious alternatives to conventional sanitizers in food postharvest applications. Here, we investigated the efficacy of sequential treatments of a lytic bacteriophage and gaseous ozone, during vacuum cooling of fresh produce, against Escherichia coli O157:H7. Spinach leaves were spot-inoculated with 105-107 CFU g-1 E. coli O157:H7 B6-914 and treated with Escherichia phage OSYSP spray (109 PFU g-1), gaseous ozone, or their combination. Vacuum cooling, which preceded or followed phage application but ran concomitantly with ozone treatment, was performed in a custom-made vessel at the following process sequence: vacuum to 28.5 in. Hg, vessel pressurization to 10 psig with gas containing 1.5 g ozone/kg gas-mix, holding for 30 min, and vessel depressurization to ambient pressure. Bacteriophage or gaseous ozone inactivated E. coli O157:H7, applied at different initial populations on spinach leaves, by 1.7-2.0 or 1.8-3.5 log CFU g-1, respectively. At the high inoculum levels tested (7.1 log CFU g-1), sequential treatments of phage and ozone reduced E. coli O157:H7 population by 4.0 log CFU g-1, but when treatment order was reversed (i.e., ozone followed by bacteriophage), the combination synergistically decreased pathogen's population on spinach leaves by 5.2 log CFU g-1. Regardless the antibacterial application order, E. coli O157:H7 populations, applied initially at ~ 105 CFU g-1, were reduced below the enumeration method's detection level (i.e., < 101 CFU g-1). The study proved that bacteriophage-ozone combination, applied in conjunction with vacuum cooling, is a potent pathogen intervention strategy in fresh produce post-harvest applications.


Assuntos
Bacteriófagos , Escherichia coli O157 , Ozônio , Contagem de Colônia Microbiana , Spinacia oleracea/microbiologia , Microbiologia de Alimentos , Escherichia , Ozônio/farmacologia , Folhas de Planta/microbiologia
3.
Genome Announc ; 6(3)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348344

RESUMO

Bacillus velezensis OSY-S3 produces anti-Listeria, anti-Escherichia coli, and antifungal compounds. Additionally, fermentate of B. velezensis OSY-S3 culture removes Staphylococcus aureus biofilms effectively. The draft genome sequence of B. velezensis OSY-S3 reported here had a genome size of ~3.90 Mb and a G+C content of 46.5%.

4.
Genome Announc ; 5(42)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051235

RESUMO

Bacteriophage OSYSP is a new anti-Escherichia coli O157:H7 phage isolated from municipal wastewater in Ohio. OSYSP is potent against enterohemorrhagic E. coli and is a candidate biocontrol agent for food and therapeutic applications. In this paper, we present the important genetic features of this phage based on its complete genome sequence.

5.
Genome Announc ; 5(41)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025947

RESUMO

Brevibacillus laterosporus OSY-I1 is a Gram-positive spore-forming bacterium isolated from soil. The bacterium produces brevibacillin, an antimicrobial lipopeptide effective against several drug-resistant Gram-positive bacteria. Here, we present the draft genome sequence of the strain OSY-I1 and the gene cluster responsible for the biosynthesis of brevibacillin.

6.
J Food Prot ; 80(7): 1066-1071, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28556680

RESUMO

Foodborne disease outbreaks associated with the consumption of fresh produce pose a threat to public health, decrease consumer confidence in minimally processed foods, and negatively impact the sales of these commodities. The aim of the study was to determine the influence of population size of inoculated pathogen on its inactivation by gaseous ozone treatment during vacuum cooling. Spinach leaves were spot inoculated with Escherichia coli O157:H7 at approximate initial populations of 108, 107, and 105 CFU/g. Inoculated leaves were vacuum cooled (28.5 inHg; 4°C) in a custom-made vessel and then were subjected to a gaseous ozone treatment under the following conditions: 1.5 g of ozone per kg of gas mixture, vessel pressure at 10 lb/in2 gauge, 94 to 98% relative humidity, and 30 min of holding time at 9°C. Treatment of the leaves, having the aforementioned inocula, decreased E. coli populations by 0.2, 2.1, and 2.8 log CFU/g, respectively, compared with the inoculated untreated controls. Additionally, spinach leaves were inoculated at 1.4 × 103 CFU/g, which approximates natural contamination level, and the small populations remaining after ozone treatment were quantified using the most-probable-number (MPN) method. Vacuum and ozone sequential treatment decreased this E. coli O157:H7 population to <3 MPN/g (i.e., greater than 3-log reduction). Resulting log reductions were greater (P < 0.05) at the lower rather than the higher inoculum levels. In conclusion, treatment of spinach leaves with gaseous ozone is effective against pathogen loads comparable to those found in naturally contaminated fresh produce, but efficacy decreases as inoculum level increases.


Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Embalagem de Alimentos/métodos , Ozônio , Spinacia oleracea/microbiologia , Vácuo , Contagem de Colônia Microbiana , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Humanos , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA