Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1154, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326307

RESUMO

Metal-organic frameworks (MOFs) are a class of porous materials known for their large surface areas. Thus, over the past few decades the development of MOFs and their applications has been a major topic of interest throughout the scientific community. However, many current conventional syntheses of MOFs are lengthy solvothermal processes carried out at elevated temperatures. Herein, we developed a rapid light-induced synthesis of MOFs by harnessing the plasmonic photothermal abilities of bipyramidal gold nanoparticles (AuBPs). The generality of the photo-induced method was demonstrated by synthesizing four different MOFs utilizing three different wavelengths (520 nm, 660 nm and 850 nm). Furthermore, by regulating light exposure, AuBPs could be embedded in the MOF or maintained in the supernatant. Notably, the AuBPs-embedded MOF (AuBP@UIO-66) retained its plasmonic properties along with the extraordinary surface area typical to MOFs. The photothermal AuBP@UIO-66 demonstrated a significant light-induced heating response that was utilized for ultrafast desorption and MOF activation.

2.
Nat Commun ; 14(1): 6355, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816769

RESUMO

Using photons to drive chemical reactions has become an increasingly important field of chemistry. Plasmonic materials can provide a means to introduce the energy necessary for nucleation and growth of nanoparticles by efficiently converting visible and infrared light to heat. Moreover, the formation of crystalline nanoparticles has yet to be included in the extensive list of plasmonic photothermal processes. Herein, we establish a light-assisted colloidal synthesis of iron oxide, silver, and palladium nanoparticles by utilizing silica-encapsulated gold bipyramids as plasmonic heat sources. Our work shows that the silica surface chemistry and localized thermal hotspot generated by the plasmonic nanoparticles play crucial roles in the formation mechanism, enabling nucleation and growth at temperatures considerably lower than conventional heating. Additionally, the photothermal method is extended to anisotropic geometries and can be applied to obtain intricate assemblies inaccessible otherwise. This study enables photothermally heated nanoparticle synthesis in solution through the plasmonic effect and demonstrates the potential of this methodology.

3.
Nat Chem ; 15(4): 475-482, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36702882

RESUMO

Light-induced catalysis and thermoplasmonics are promising fields creating many opportunities for innovative research. Recent advances in light-induced olefin metathesis have led to new applications in polymer and material science, but further improvements to reaction scope and efficiency are desired. Herein, we present the activation of latent ruthenium-based olefin metathesis catalysts via the photothermal response of plasmonic gold nanobipyramids. Simple synthetic control over gold nanobipyramid size results in tunable localized surface plasmon resonance bands enabling catalyst initiation with low-energy visible and infrared light. This approach was applied to the ROMP of dicyclopentadiene, affording plasmonic polymer composites with exceptional photoresponsive and mechanical properties. Moreover, this method of catalyst activation was proven to be remarkably more efficient than activation through conventional heating in all the metathesis processes tested. This study paves the way for providing a wide range of photoinduced olefin metathesis processes in particular and photoinduced latent organic reactions in general by direct photothermal activation of thermally latent catalysts.

4.
Bioconjug Chem ; 34(1): 30-36, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36326584

RESUMO

Nucleic-acid nanostructures, which have been designed and constructed with atomic precision, have been used as scaffolds for different molecules and proteins, as nanomachines, as computational components, and more. In particular, RNA has garnered tremendous interest as a building block for the self-assembly of sophisticated and functional nanostructures by virtue of its ease of synthesis by in vivo or in vitro transcription, its superior mechanical and thermodynamic properties, and its functional roles in nature. In this Topical Review, we describe recent developments in the use of RNA for the design and construction of nanostructures. We discuss the differences between RNA and DNA that make RNA attractive as a building block for the construction of nucleic-acid nanostructures, and we present the uses of different nanostructures─RNA alone, RNA-DNA, and functional RNA nanostructures.


Assuntos
Nanoestruturas , RNA , RNA/química , Nanoestruturas/química , DNA/química , Proteínas/química , Conformação de Ácido Nucleico , Nanotecnologia
5.
Nanoscale ; 15(3): 942-952, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36515009

RESUMO

The COVID-19 pandemic (caused by the SARS_CoV_2 virus) has emphasized the need for quick, easy-to-operate, reliable, and affordable diagnostic tests and devices at the Point-of-Care (POC) for homes/fields/clinics. Such tests and devices will contribute significantly to the fight against the COVID-19 pandemic and any future infectious disease epidemic. Often, academic research studies and those from industry lack knowledge of each other's developments. Here, we introduced DNA Polymerase Chain Reaction (PCR) and isothermal amplification reactions and reviewed the current commercially available POC nucleic acid diagnostic devices. In addition, we reviewed the history and the recent advancements in an effort to develop reliable, quick, portable, cost-effective, and automatic point-of-care nucleic acid diagnostic devices, from sample to result. The purpose of this paper is to bridge the gap between academia and industry and to share important knowledge on this subject.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Pandemias , SARS-CoV-2/genética , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA