Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 15(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36546695

RESUMO

Understanding mechanisms involved in speciation can be challenging, especially when hybridization or introgression blurs species boundaries. In bats, resolving relationships of some closely related groups has proved difficult due subtle interspecific variation both in morphometrics and molecular data sets. The endemic South American Histiotus bats, currently considered a subgenus of Eptesicus, harbor unresolved phylogenetic relationships and of those is a trio consisting of two closely related species: Eptesicus (Histiotus) macrotus and Eptesicus (Histiotus) montanus, and their relationship with a third, Eptesicus (Histiotus) magellanicus. The three sympatric species bear marked resemblance to each other, but can be differentiated morphologically. Furthermore, previous studies have been unable to differentiate the species from each other at a molecular level. In order to disentangle the phylogenetic relationships of these species, we examined the differentiation patterns and evolutionary history of the three Eptesicus (H.) species at the whole-genome level. The nuclear DNA statistics between the species suggest strong gene flow and recent hybridization between E. (H.) montanus and E. (H.) macrotus, whereas E. (H.) magellanicus shows a higher degree of isolation. In contrast, mitochondrial DNA shows a closer relationship between E. (H.) magellanicus and E. (H.) montanus. Opposing patterns in mtDNA and nuclear markers are often due to differences in dispersal, and here it could be both as a result of isolation in refugia during the last glacial maximum and female philopatry and male-biased dispersal. In conclusion, this study shows the importance of both the nuclear and mitochondrial DNA in resolving phylogenetic relationships and species histories.


Assuntos
Quirópteros , Genoma Mitocondrial , Animais , Feminino , Masculino , Filogenia , Quirópteros/genética , Simpatria , DNA Mitocondrial/genética , Análise de Sequência de DNA
2.
Integr Zool ; 16(6): 820-833, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33264458

RESUMO

Plague has been known since ancient times as a re-emerging infectious disease, causing considerable socioeconomic burden in regional hotspots. To better understand the epidemiological cycle of the causative agent of the plague, its potential occurrence, and possible future dispersion, one must carefully consider the taxonomy, distribution, and ecological requirements of reservoir-species in relation either to natural or human-driven changes (e.g. climate change or urbanization). In recent years, the depth of knowledge on species taxonomy and species composition in different landscapes has undergone a dramatic expansion, driven by modern taxonomic methods such as synthetic surveys that take into consideration morphology, genetics, and the ecological setting of captured animals to establish their species identities. Here, we consider the recent taxonomic changes of the rodent species in known plague reservoirs and detail their distribution across the world, with a particular focus on those rodents considered to be keystone host species. A complete checklist of all known plague-infectable vertebrates living in plague foci is provided as a Supporting Information table.


Assuntos
Reservatórios de Doenças/veterinária , Saúde Global , Peste/epidemiologia , Doenças dos Roedores/microbiologia , Roedores , Yersinia pestis , Distribuição Animal , Animais , Doenças dos Roedores/epidemiologia
3.
Proc Natl Acad Sci U S A ; 115(46): 11790-11795, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30373823

RESUMO

Blood-sucking phlebotomine sand flies (Diptera: Psychodidae) transmit leishmaniasis as well as arboviral diseases and bartonellosis. Sand fly females become infected with Leishmania parasites and transmit them while imbibing vertebrates' blood, required as a source of protein for maturation of eggs. In addition, both females and males consume plant-derived sugar meals as a source of energy. Plant meals may comprise sugary solutions such as nectar or honeydew (secreted by plant-sucking homopteran insects), as well as phloem sap that sand flies obtain by piercing leaves and stems with their needle-like mouthparts. Hence, the structure of plant communities can influence the distribution and epidemiology of leishmaniasis. We designed a next-generation sequencing (NGS)-based assay for determining the source of sand fly plant meals, based upon the chloroplast DNA gene ribulose bisphosphate carboxylase large chain (rbcL). Here, we report on the predilection of several sand fly species, vectors of leishmaniasis in different parts of the world, for feeding on Cannabis sativa We infer this preference based on the substantial percentage of sand flies that had fed on C. sativa plants despite the apparent "absence" of these plants from most of the field sites. We discuss the conceivable implications of the affinity of sand flies for C. sativa on their vectorial capacity for Leishmania and the putative exploitation of their attraction to C. sativa for the control of sand fly-borne diseases.


Assuntos
Herbivoria/fisiologia , Psychodidae/fisiologia , Animais , Comportamento Animal , Cannabis , Feminino , Insetos Vetores/parasitologia , Leishmania/genética , Leishmaniose/microbiologia , Masculino , Psychodidae/metabolismo , Psychodidae/parasitologia , Fatores Sexuais
4.
PLoS Negl Trop Dis ; 12(7): e0006630, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30044788

RESUMO

Plague (Yersinia pestis) and zoonotic cutaneous leishmaniasis (Leishmania major) are two rodent-associated diseases which are vectored by fleas and phlebotomine sand flies, respectively. In Central Asia, the great gerbil (Rhombomys opimus) serves as the primary reservoir for both diseases in most natural foci. The systemic insecticide fipronil has been previously shown to be highly effective in controlling fleas and sand flies. However, the impact of a fipronil-based rodent bait, on flea and sand fly abundance, has never been reported in Central Asia. A field trial was conducted in southeastern Kazakhstan to evaluate the efficacy of a 0.005% fipronil bait, applied to gerbil burrows for oral uptake, in reducing Xenopsylla spp. flea and Phlebotomus spp. sand fly abundance. All active gerbil burrows within the treated area were presented with ~120 g of 0.005% fipronil grain bait twice during late spring/early summer (June 16, June 21). In total, 120 occupied and 14 visited gerbil colonies were surveyed and treated, and the resulting application rate was minimal (~0.006 mg fipronil/m2). The bait resulted in 100% reduction in Xenopsylla spp. flea abundance at 80-days post-treatment. Gravid sand flies were reduced ~72% and 100% during treatment and at week-3 post-treatment, respectively. However, noticeable sand fly reduction did not occur after week-3 and results suggest environmental factors also influenced abundance significantly. In conclusion, fipronil bait, applied in southeastern Kazakhstan, has the potential to reduce or potentially eliminate Xenopsylla spp. fleas if applied at least every 80-days, but may need to be applied at higher frequency to significantly reduce the oviposition rate of Phlebotomus spp. sand flies. Fipronil-based bait may provide a means of controlling blood-feeding vectors, subsequently reducing disease risk, in Central Asia and other affected regions globally.


Assuntos
Infestações por Pulgas/veterinária , Gerbillinae/parasitologia , Controle de Insetos/métodos , Inseticidas/administração & dosagem , Psychodidae/efeitos dos fármacos , Pirazóis/administração & dosagem , Sifonápteros/efeitos dos fármacos , Animais , Vetores de Doenças , Comportamento Alimentar , Feminino , Infestações por Pulgas/parasitologia , Infestações por Pulgas/prevenção & controle , Gerbillinae/fisiologia , Cazaquistão , Masculino , Psychodidae/fisiologia , Sifonápteros/fisiologia
5.
Adv Exp Med Biol ; 918: 101-170, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27722862

RESUMO

This chapter summarizes information about the natural foci of plague in the world. We describe the location, main hosts, and vectors of Yersinia pestis. The ecological features of the hosts and vectors of plague are listed, including predators - birds and mammals and their role in the epizootic. The epizootic process in plague and the factors affecting the dynamics of epizootic activity of natural foci of Y. pestis are described in detail. The mathematical models of the epizootic process in plague and predictive models are briefly described. The most comprehensive list of the hosts and vectors of Y. pestis in the world is presented as well.


Assuntos
Saúde Global , Peste/epidemiologia , Yersinia pestis/fisiologia , Animais , Vetores de Doenças/classificação , Interações Hospedeiro-Patógeno , Peste/microbiologia , Comportamento Predatório
6.
PLoS One ; 10(9): e0136962, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26325073

RESUMO

INTRODUCTION: The wildlife plague system in the Pre-Balkhash desert of Kazakhstan has been a subject of study for many years. Much progress has been made in generating a method of predicting outbreaks of the disease (infection by the gram negative bacterium Yersinia pestis) but existing methods are not yet accurate enough to inform public health planning. The present study aimed to identify characteristics of individual mammalian host (Rhombomys opimus) burrows related to and potentially predictive of the presence of R.opimus and the dominant flea vectors (Xenopsylla spp.). METHODS: Over four seasons, burrow characteristics, their current occupancy status, and flea and tick burden of the occupants were recorded in the field. A second data set was generated of long term occupancy trends by recording the occupancy status of specific burrows over multiple occasions. Generalised linear mixed models were constructed to identify potential burrow properties predictive of either occupancy or flea burden. RESULTS: At the burrow level, it was identified that a burrow being occupied by Rhombomys, and remaining occupied, were both related to the characteristics of the sediment in which the burrow was constructed. The flea burden of Rhombomys in a burrow was found to be related to the tick burden. Further larger scale properties were also identified as being related to both Rhombomys and flea presence, including latitudinal position and the season. CONCLUSIONS: Therefore, in advancing our current predictions of plague in Kazakhstan, we must consider the landscape at this local level to increase our accuracy in predicting the dynamics of gerbil and flea populations. Furthermore this demonstrates that in other zoonotic systems, it may be useful to consider the distribution and location of suitable habitat for both host and vector species at this fine scale to accurately predict future epizootics.


Assuntos
Animais Selvagens/microbiologia , Reservatórios de Doenças/microbiologia , Peste/microbiologia , Peste/transmissão , Animais , Surtos de Doenças , Vetores de Doenças , Ecossistema , Cazaquistão , Densidade Demográfica , Doenças dos Roedores/microbiologia , Doenças dos Roedores/transmissão , Estações do Ano , Sifonápteros/microbiologia , Xenopsylla/microbiologia , Yersinia pestis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...