Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 15(8): 5001-9, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26154440

RESUMO

The dispersion relation of plasmons in graphene with a periodic lattice of apertures takes a band structure. Light incident on this plasmonic crystal excites only particular plasmonic modes in select bands. The selection rule is not only frequency/wavevector matching but also symmetry matching, where the symmetry of plasmonic modes originates from the point group symmetry of the lattice. We demonstrate versatile manipulation of light-plasmon coupling behaviors by engineering the symmetry of the graphene plasmonic crystal.

2.
Nat Commun ; 5: 4866, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25189574

RESUMO

Field-effect transistor biomolecular sensors based on low-dimensional nanomaterials boast sensitivity, label-free operation and chip-scale construction. Chemical vapour deposition graphene is especially well suited for multiplexed electronic DNA array applications, since its large two-dimensional morphology readily lends itself to top-down fabrication of transistor arrays. Nonetheless, graphene field-effect transistor DNA sensors have been studied mainly at single-device level. Here we create, from chemical vapour deposition graphene, field-effect transistor arrays with two features representing steps towards multiplexed DNA arrays. First, a robust array yield--seven out of eight transistors--is achieved with a 100-fM sensitivity, on par with optical DNA microarrays and at least 10 times higher than prior chemical vapour deposition graphene transistor DNA sensors. Second, each graphene acts as an electrophoretic electrode for site-specific probe DNA immobilization, and performs subsequent site-specific detection of target DNA as a field-effect transistor. The use of graphene as both electrode and transistor suggests a path towards all-electrical multiplexed graphene DNA arrays.


Assuntos
Eletrodos , Grafite/química , Nanotecnologia/métodos , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Transistores Eletrônicos , Sequência de Bases , Microscopia de Fluorescência , Dados de Sequência Molecular , Nanotecnologia/instrumentação
3.
Nano Lett ; 14(5): 2479-84, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24678885

RESUMO

We introduce far-infrared graphene plasmonic crystals. Periodic structural perturbation-in a proof-of-concept form of hexagonal lattice of apertures-of a continuous graphene medium alters delocalized plasmonic dynamics, creating plasmonic bands in a manner akin to photonic crystals. Fourier transform infrared spectroscopy demonstrates band formation, where far-infrared irradiation excites a unique set of plasmonic bands selected by phase matching and symmetry-based selection rules. This band engineering may lead to a new class of graphene plasmonic devices.

4.
Philos Trans A Math Phys Eng Sci ; 372(2012): 20130104, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24567472

RESUMO

A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics.

5.
Nature ; 488(7409): 65-9, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859202

RESUMO

Metamaterials with negative refractive indices can manipulate electromagnetic waves in unusual ways, and can be used to achieve, for example, sub-diffraction-limit focusing, the bending of light in the 'wrong' direction, and reversed Doppler and Cerenkov effects. These counterintuitive and technologically useful behaviours have spurred considerable efforts to synthesize a broad array of negative-index metamaterials with engineered electric, magnetic or optical properties. Here we demonstrate another route to negative refraction by exploiting the inertia of electrons in semiconductor two-dimensional electron gases, collectively accelerated by electromagnetic waves according to Newton's second law of motion, where this acceleration effect manifests as kinetic inductance. Using kinetic inductance to attain negative refraction was theoretically proposed for three-dimensional metallic nanoparticles and seen experimentally with surface plasmons on the surface of a three-dimensional metal. The two-dimensional electron gas that we use at cryogenic temperatures has a larger kinetic inductance than three-dimensional metals, leading to extraordinarily strong negative refraction at gigahertz frequencies, with an index as large as -700. This pronounced negative refractive index and the corresponding reduction in the effective wavelength opens a path to miniaturization in the science and technology of negative refraction.

6.
Nano Lett ; 12(5): 2272-7, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22494364

RESUMO

We report electronics regime (GHz) two-dimensional (2D) plasmonic circuits, which locally and nonresonantly interface with electronics, and thus offer to electronics the benefits of their ultrasubwavelength confinement, with up to 440,000-fold mode-area reduction. By shaping the geometry of 2D plasmonic media 80 nm beneath an unpatterned metallic gate, plasmons are routed freely into various types of reflections and interferences, leading to a range of plasmonic circuits, e.g., plasmonic crystals and plasmonic-electromagnetic interferometers, offering new avenues for electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...