Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(2): 973-982, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33403853

RESUMO

A cationic water-soluble dipicolylamine (DPA)-containing alkynylplatinum(II) terpyridine complex has been synthesized and employed as a dual-selective probe for the detection of cations and anions. The complex was shown to exhibit a strong binding affinity toward Zn2+, whereas the zinc-bound adduct was found to demonstrate the capability of recognizing pyrophosphate (PPi). As evidenced by molecular modeling and various spectroscopic and spectrometric studies, including HR-ESI mass spectrometry, NMR spectroscopy, PXRD measurements, and UV-vis absorption and emission spectroscopy, a PPi anion was found to be capable of bridging two zinc-bound complex molecules in a clip-shaped fashion, which was further oligomerized through intermolecular Pt···Pt and π-π stacking interactions to form nanofibers with a hexagonal columnar phase. This work provides important insights into not only the construction of aesthetically pleasing supramolecular architectures but also the multifunctional probes, which offer great promise to the fields of biosensing and chemical sensing.

2.
ACS Appl Mater Interfaces ; 12(7): 8503-8512, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32027479

RESUMO

Platinum(II) polypyridine complexes of a square-planar geometry have been used as spectroscopic reporters for quantification of various charged species through non-covalent metal-metal interactions. The characterization of molecular weights and architectures of polyelectrolytes represents a challenging task in polymer science. Here, we report the utilization of platinum(II) complex probes and non-covalent metal-metal interactions for sensing polyelectrolyte lengths and architectures. It is found that the platinum(II) probes can bind to linear polyelectrolytes via electrostatic attractions and give rise to significant spectroscopic changes associated with the formation of metal-metal interactions, and the extent of the spectroscopic changes is found to increase with the lengths of the linear polyelectrolytes. Besides, the platinum(II) probes have been found to co-assemble with the linear polyelectrolytes to form well-defined nanofibers, and the lengths of the linear polyelectrolytes can be directly estimated from the diameter of the nanofibers under transmission electron microscopy observation. Interestingly, upon mixing with the platinum(II) probes, polyelectrolytes with bottlebrush architectures have been found to exhibit larger spectroscopic changes than linear polyelectrolytes with the same chemical composition. Combined with the reported theoretical studies on counterion condensation of polyelectrolytes, the platinum(II) complexes are found to function as spectroscopic probes for sensing the charge densities of the polyelectrolytes with different lengths and diverse architectures. Moreover, platinum(II) probes pre-organized in nanostructured aggregates have been found to intercalate into double-stranded DNA, which are naturally occurring biological polyelectrolytes with helical architectures and intercalation sites, to give significant enhancement of spectroscopic changes when compared to the intercalation of monomeric platinum(II) probes into double-stranded DNA.


Assuntos
DNA/química , Substâncias Intercalantes/química , Nanofibras/química , Platina/química , Polieletrólitos/química , Resinas Acrílicas/química , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nanofibras/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polietilenoglicóis/química , Polímeros/química , Análise Espectral , Eletricidade Estática
3.
J Am Chem Soc ; 141(46): 18570-18577, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31709796

RESUMO

Amyloid fibrillation has been acknowledged as a hallmark of a number of neurodegenerative ailments such as Alzheimer's disease. Accordingly, efficient detection of amyloid fibrillation will allow for great advances in the field of biomedical applications as well as in achieving early medical diagnosis. In this work, a luminescence assay for the sensitive and specific detection of amyloid fibrillation was developed by using platinum(II) complexes as sensing platforms. Supramolecular self-assembly of platinum(II) complexes was induced upon addition of amyloid, leading to alterations in the spectroscopic and luminescence properties of the complexes. As compared to fluorescent dyes, luminescent platinum(II) complexes exhibit attractive large Stokes shifts, phosphorescence lifetimes in the microsecond to submicrosecond regime, and low-energy red emission after aggregation, which are advantageous to biological imaging. At the same time, the platinum(II) complex adopted herein was found to have high photostability, high selectivity and specificity, and low cytotoxicity. The proposed design is the very first approach to detect amyloid fibrillation through the supramolecular self-assembly of luminescent platinum(II) complexes.


Assuntos
Amiloide/análise , Complexos de Coordenação/química , Insulina/análise , Substâncias Luminescentes/química , Platina/química , Amiloide/ultraestrutura , Animais , Bovinos , Medições Luminescentes , Microscopia Confocal , Solubilidade , Água/química
4.
ACS Appl Mater Interfaces ; 11(5): 4799-4808, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30694047

RESUMO

A new approach toward acetylcholinesterase (AChE) detection has been demonstrated based on the electrostatic interactions between anionic alkynylplatinum(II) complex molecules and cationic coordination polymer, together with the spectroscopic and emission characteristics of alkynylplatinum(II) complexes upon supramolecular self-assembly. This process involves strengthening of distinct noncovalent Pt(II)···Pt(II) and π-π stacking interactions, which is evidenced by UV-vis absorption, emission, and resonance light scattering results. Such a method has been applied to AChE inhibitor screening, which is important as the demand for AChE inhibitor assays arises along with the drug development for Alzheimer's disease. It affords an emission turn-on response and operates in a continuous and label-free fashion. The low-energy red emission and large Stokes shift of alkynylplatinum(II) complexes are advantageous to biological applications.


Assuntos
Acetilcolinesterase , Descoberta de Drogas/métodos , Medições Luminescentes/métodos , Compostos Organoplatínicos/química , Acetilcolinesterase/análise , Acetilcolinesterase/metabolismo , Animais , Técnicas Biossensoriais/métodos , Inibidores da Colinesterase/análise , Inibidores da Colinesterase/metabolismo , Humanos , Polímeros/química
5.
J Am Chem Soc ; 140(30): 9594-9605, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30040413

RESUMO

Establishment of energy landscape has emerged as an efficient pathway for improved understanding and manipulation of both thermodynamic and kinetic behaviors of complicated supramolecular systems. Herein, we report the establishment of energy landscapes of supramolecular coassembly of platinum(II) complexes and polymers, as well as the fabrication of nanostructures with enhanced complexity and intriguing properties from the coassembly systems. In the energy landscape, coassembly at room temperature has been found to only allow the longitudinal growth of platinum(II) complexes and block copolymers into core-shell nanofibers that are the kinetically trapped products. Thermal annealing can switch on the transverse growth of platinum(II) complexes and block copolymers to produce core-shell nanobelts that are the thermodynamically stable nanostructures. The extents of the transverse growth are found to increase with thermal annealing temperatures, leading to nanobelts with larger widths. Besides, rapid quenching of a hot coassembly mixture to room temperature can capture intermediate nanobelt- block-nanofiber nanostructures that are metastable and capable of converting to nanobelts upon further incubation at room temperature. Moreover, sonication treatment has been found to couple with the energy landscape of the coassembly system and open a unique energy-driven pathway to activate the kinetically forbidden nanofiber-to-nanobelt morphological transformation. Furthermore, based on the established energy landscapes, nanosphere- block-nanobelt nanostructures with distinct segmented architectures have been fabricated by thermal annealing of the ternary mixture of platinum(II) complexes, block copolymers, and polymer brushes in a one-pot and single-step procedure. Finally, the nanobelts and nanosphere- block-nanobelt nanostructures are found to possess intriguing morphological stability against acid and dilution, exhibiting characteristics that are important for promising biomedical applications.

6.
ACS Appl Mater Interfaces ; 9(47): 41143-41150, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29140068

RESUMO

A water-soluble anionic alkynylplatinum(II) 2,6-bis(benzimidazol-2'-yl)pyridine (bzimpy) complex has been strategically designed and synthesized to show supramolecular self-assembly with cationic arginine-rich peptides through unique noncovalent Pt(II)···Pt(II) and π-π stacking interactions. Upon introduction of trypsin, the arginine-rich peptides can be hydrolyzed into small fragments and deaggregation of the platinum(II) complex molecules is observed. The aggregation-deaggregation process has been probed by UV-vis absorption, emission, and resonance light scattering (RLS) studies. This platinum(II) complex has been employed for developing a new, continuous and label-free luminescence assay for trypsin as well as for inhibitor screening, and has been successfully applied to detect trypsin in diluted serum solutions.

7.
ACS Appl Mater Interfaces ; 9(41): 36220-36228, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28991427

RESUMO

A series of platinum(II) terpyridine complexes with tetraphenylethylene-modified alkynyl ligands has been designed and synthesized. The introduction of the tetraphenylethylene motif has led to aggregation-induced emission (AIE) properties, which upon self-assembly led to the formation of metal-metal-to-ligand charge transfer (MMLCT) behavior stabilized by Pt···Pt and/or π-π interactions. Tuning the steric bulk or hydrophilicity through molecular engineering of the platinum(II) complexes has been found to alter their spectroscopic properties and result in interesting superstructures (including nanorods, nanospheres, nanowires, and nanoleaves) in the self-assembly process. The eye-catching color and emission changes upon varying the solvent compositions may have potential applications in chemosensing materials for the detection of microenvironment changes. Furthermore, the importance of the directional Pt···Pt and/or π-π interactions on the construction of distinctive superstructures has also been examined by UV-vis absorption and emission spectroscopy and transmission electron microscopy. This work represents the interplay of both inter- and intramolecular interactions as well as the energies of the two different chromophoric/luminophoric systems that may open up a new route for the development of platinum(II)-AIE hybrids as functional materials.

8.
Proc Natl Acad Sci U S A ; 114(45): 11844-11849, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078381

RESUMO

An important feature of biological systems to achieve complexity and precision is the involvement of multiple components where each component plays its own role and collaborates with other components. Mimicking this, we report living supramolecular polymerization achieved by collaborative assembly of two structurally dissimilar components, that is, platinum(II) complexes and poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA). The PAA blocks neutralize the charges of the platinum(II) complexes, with the noncovalent metal-metal and π-π interactions directing the longitudinal growth of the platinum(II) complexes into 1D crystalline nanostructures, and the PEG blocks inhibiting the transverse growth of the platinum(II) complexes and providing the whole system with excellent solubility. The ends of the 1D crystalline nanostructures have been found to be active during the assembly and remain active after the assembly. One-dimensional segmented nanostructures with heterojunctions have been produced by sequential growth of two types of platinum(II) complexes. The PAA blocks act as adapters at the heterojunctions for lattice matching between chemically and crystallographically different platinum(II) complexes, achieving heterojunctions with a lattice mismatch as large as 21%.

9.
Chem Soc Rev ; 44(13): 4192-202, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25588608

RESUMO

Other than traditional cation detection strategies, which are solely based on the ion-receptor complementarity, the extension of the concept of supramolecular chemistry and the mechanisms of irreversible analyte-specific reactions have also been integrated into the design of luminescent probes for the detection of cation in view of the exploration of highly sensitive and selective sensors. In this highlight, a versatile range of organic and organometallic architectures with cation-sensing capabilities based on the above mechanisms will be discussed.


Assuntos
Técnicas Biossensoriais , Cátions , Corantes Fluorescentes , Conformação Molecular , Cátions/análise , Cátions/química , Corantes Fluorescentes/química
10.
ChemistryOpen ; 3(5): 172-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25478312

RESUMO

Molecular sensors able to detect ions are of interest due to their potential application in areas such as pollutant sequestration. Alkynylplatinum(II) terpyridine complexes with an amide-based receptor moiety have been synthesized and characterized. Their anion binding properties based on host-guest interactions have been examined with the use of UV-vis absorption and emission spectral titration studies. Spectral changes were observed for both complexes upon the addition of spherical and nonspherical anions. Their titration profiles were shown to be in good agreement with theoretical results predicting a 1:1 binding model, and the binding constants were determined from the experimental data. Drastic color changes from yellow to orange-red were observed for one of the complexes upon titration with fluoride (F(-)) ion in acetone. These changes were ascribed to the deprotonation of the amide functionalities induced by F(-) ion, and this was confirmed by the restoration of spectral changes upon addition of trifluoroacetic acid to the F(-) ion-complex mixture as well as by electrospray ionization mass spectrometry (ESI-MS) data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA