Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 15270, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127379

RESUMO

Activating mutations in the Wnt pathway are a characteristic feature of colorectal cancer (CRC). The R-spondin (RSPO) family is a group of secreted proteins that enhance Wnt signaling and RSPO2 and RSPO3 gene fusions have been reported in CRC. We have previously shown that Wnt pathway blockers exhibit potent combinatorial activity with taxanes to inhibit tumor growth. Here we show that RSPO3 antagonism synergizes with paclitaxel based chemotherapies in patient-derived xenograft models (PDX) with RSPO3 fusions and in tumors with common CRC mutations such as APC, ß-catenin, or RNF43. In these latter types of tumors that represent over 90% of CRC, RSPO3 is produced by stromal cells in the tumor microenvironment and the activating mutations appear to sensitize the tumors to Wnt-Rspo synergy. The combination of RSPO3 inhibition and taxane treatment provides an approach to effectively target oncogenic WNT signaling in a significant number of patients with colorectal and other intestinal cancers.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/farmacologia , Neoplasias Colorretais , Mutação , Proteínas de Neoplasias , Paclitaxel/farmacologia , Taxoides/farmacologia , Trombospondinas , Microambiente Tumoral/efeitos dos fármacos , Via de Sinalização Wnt , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Trombospondinas/antagonistas & inibidores , Trombospondinas/genética , Trombospondinas/metabolismo , Microambiente Tumoral/genética , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Sci Adv ; 3(6): e1700090, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28691093

RESUMO

The WNT pathway mediates intercellular signaling that regulates cell fate in both normal development and cancer. It is widely appreciated that the WNT pathway is frequently dysregulated in human cancers through a variety of genetic and epigenetic mechanisms. Targets in the WNT pathway are being extensively pursued for the development of new anticancer therapies, and we have advanced two WNT antagonists for clinical development: vantictumab (anti-FZD) and ipafricept (FZD8-Fc). We examined the antitumor efficacy of these WNT antagonists in combination with various chemotherapies in a large set of patient-derived xenograft models. In responsive models, WNT blockade led to profound synergy with taxanes such as paclitaxel, and the combination activity with taxanes was consistently more effective than with other classes of chemotherapy. Taxane monotherapy increased the frequency of cells with active WNT signaling. This selection of WNT-active chemotherapy-resistant tumorigenic cells was prevented by WNT-antagonizing biologics and required sequential dosing of the WNT antagonist followed by the taxane. The WNT antagonists potentiated paclitaxel-mediated mitotic blockade and promoted widespread mitotic cell death. By blocking WNT/ß-catenin signaling before mitotic blockade by paclitaxel, we found that this treatment effectively sensitizes cancer stem cells to taxanes. This combination strategy and treatment regimen has been incorporated into ongoing clinical testing for vantictumab and ipafricept.


Assuntos
Antineoplásicos/farmacologia , Mitose/efeitos dos fármacos , Taxoides/farmacologia , Proteínas Wnt/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Paclitaxel/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
3.
Clin Cancer Res ; 18(19): 5374-86, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22952347

RESUMO

PURPOSE: We previously showed that targeting Delta-like ligand 4 (DLL4) in colon and breast tumors inhibited tumor growth and reduced tumor initiating cell frequency. In this report, we have extended these studies to pancreatic cancer and probed the mechanism of action in tumor and stromal cells involved in antitumor efficacy. EXPERIMENTAL DESIGN: Patient-derived pancreatic xenograft tumor models were used to evaluate the antitumor effect of anti-DLL4. To investigate the mechanism of action, we compared the activity of targeting DLL4 in tumor cells with an anti-human DLL4 antibody (anti-hDLL4) and in the host stroma/vasculature with an anti-mouse DLL4 antibody (anti-mDLL4). The effect of these antibodies on cancer stem cell frequency was examined by in vivo limiting dilution assays. RESULTS: The combination of anti-hDLL4 and anti-mDLL4 was efficacious in a broad spectrum of pancreatic tumor xenografts and showed additive antitumor activity together with gemcitabine. Treatment with either anti-hDLL4 or anti-mDLL4 delayed pancreatic tumor recurrence following termination of gemcitabine treatment, and the two together produced an additive effect. Anti-hDLL4 had a pronounced effect in reducing the tumorigenicity of pancreatic cancer cells based on serial transplantation and tumorsphere assays. In contrast, disruption of tumor angiogenesis with anti-mDLL4 alone or with anti-VEGF had minimal effects on tumorigenicity. Gene expression analyses indicated that anti-DLL4 treatment regulated genes that participate in Notch signaling, pancreatic differentiation, and epithelial-to-mesenchymal transition. CONCLUSIONS: Our findings suggest a novel therapeutic approach for pancreatic cancer treatment through antagonism of DLL4/Notch signaling.


Assuntos
Anticorpos Anti-Idiotípicos/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular , Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Neovascularização Patológica/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptores Notch/imunologia , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Gencitabina
4.
Mol Cancer Ther ; 4(11): 1791-800, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16276001

RESUMO

Antibody-directed enzyme prodrug therapy (ADEPT) delivers chemotherapeutic agents in high concentration to tumor tissue while minimizing systemic drug exposure. beta-Lactamases are particularly useful enzymes for ADEPT systems due to their unique substrate specificity that allows the activation of a variety of lactam-based prodrugs with minimal interference from mammalian enzymes. We evaluated the amino acid sequence of beta-lactamase from Enterobacter cloacae for the presence of human T-cell epitopes using a cell-based proliferation assay using samples from 65 community donors. We observed a low background response that is consistent with a lack of preexposure to this enzyme. beta-Lactamase was found to contain four CD4+ T-cell epitopes. For two of these epitopes, we identified single amino acid changes that result in significantly reduced proliferative responses while retaining stability and activity of the enzyme. The beta-lactamase variant containing both changes induces significantly less proliferation in human and mouse cell assays, and 5-fold lower levels of IgG1 in mice were observed after repeat administration of beta-lactamase variant with adjuvant. The beta-lactamase variant should be very suitable for the construction of ADEPT fusion proteins, as it combines high activity toward lactam prodrugs, high plasma stability, a monomeric architecture, and a relatively low risk of eliciting an immune response in patients.


Assuntos
Antineoplásicos/farmacologia , Enterobacter cloacae/enzimologia , Pró-Fármacos/farmacologia , beta-Lactamases/metabolismo , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Cefalosporinas/farmacologia , Cromatografia de Afinidade , Ensaios Clínicos como Assunto , Relação Dose-Resposta a Droga , Enterobacter cloacae/metabolismo , Epitopos/química , Escherichia coli/metabolismo , Feminino , Humanos , Hidrólise , Imunoglobulina G/química , Cinética , Lactamas/química , Leucócitos Mononucleares/citologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Peptídeos/química , Proteínas Recombinantes de Fusão/química , Risco , Linfócitos T/imunologia , Fatores de Tempo
5.
Int Immunol ; 14(6): 659-67, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12039917

RESUMO

Respiratory exposure to allergen induces the development of allergen-specific CD4(+) T cell tolerance that effectively protects against the development of allergic-sensitization and T(h)2-biased immunity. The establishment of T cell unresponsiveness to aeroallergens is an active process preceded by a transient phase of T cell activation that requires T cell co-stimulation and is critically influenced by the antigen-presenting cell type. In this study we examined the role of B cells in the development of respiratory tolerance following intranasal (i.n.) exposure to a prototypic protein antigen. We found that respiratory exposure of BCR-transgenic (Tg) mice to minute quantities of cognate antigen effectively induced T cell unresponsiveness, indicating that antigen presentation by antigen-specific B cells greatly enhanced the development of respiratory tolerance. In contrast, respiratory T cell unresponsiveness could not be induced in B cell-deficient JHD mice exposed to i.n. antigen, although T cell tolerance developed in JHD mice reconstituted with B cells, suggesting that B cells are required for the induction of respiratory T cell tolerance. Respiratory exposure of BCR-Tg mice to cognate antigen induced activation of antigen-specific T cells and partial activation of antigen-specific B cells, as demonstrated by enhanced expression by B cells of class II MHC and B7 molecules but lack of antibody secretion. Our data indicate that B cells critically influence the immune response to inhaled allergens and are required for the development of allergen-specific T cell unresponsiveness induced by respiratory allergen.


Assuntos
Alérgenos/administração & dosagem , Linfócitos B/imunologia , Tolerância Imunológica , Linfócitos T/imunologia , Administração Intranasal , Animais , Formação de Anticorpos , Linfócitos T CD4-Positivos/imunologia , Imunidade nas Mucosas , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Muramidase/administração & dosagem , Muramidase/imunologia , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Receptores de Antígenos de Linfócitos B/genética , Mucosa Respiratória/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA