Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lung ; 202(2): 157-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494528

RESUMO

PURPOSE: To investigate the transcriptome of human bronchial epithelial cells (HBEC) in response to serum from patients with different degrees of inflammation. METHODS: Serum from 19 COVID-19 patients obtained from the Hannover Unified Biobank was used. At the time of sampling, 5 patients had a WHO Clinical Progression Scale (WHO-CPS) score of 9 (severe illness). The remaining 14 patients had a WHO-CPS of below 9 (range 1-7), and lower illness. Multiplex immunoassay was used to assess serum inflammatory markers. The culture medium of HBEC was supplemented with 2% of the patient's serum, and the cells were cultured at 37 °C, 5% CO2 for 18 h. Subsequently, cellular RNA was used for RNA-Seq. RESULTS: Patients with scores below 9 had significantly lower albumin and serum levels of E-selectin, IL-8, and MCP-1 than patients with scores of 9. Principal component analysis based on 500 "core genes" of RNA-seq segregated cells into two subsets: exposed to serum from 4 (I) and 15 (II) patients. Cells from a subset (I) treated with serum from 4 patients with a score of 9 showed 5566 differentially expressed genes of which 2793 were up- and 2773 downregulated in comparison with cells of subset II treated with serum from 14 patients with scores between 1 and 7 and one with score = 9. In subset I cells, a higher expression of TLR4 and CXCL8 but a lower CDH1, ACE2, and HMOX1, and greater effects on genes involved in metabolic regulation, cytoskeletal organization, and kinase activity pathways were observed. CONCLUSION: This simple model could be useful to characterize patient serum and epithelial cell properties.


Assuntos
Inflamação , Transcriptoma , Humanos , Inflamação/genética , Inflamação/metabolismo , Células Epiteliais/metabolismo , Biomarcadores/metabolismo
2.
Front Pharmacol ; 13: 906468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172191

RESUMO

In this study, we investigated compounds of plant and mushroom origin belonging to Traditional Chinese Medicine (TCM) and to Traditional Tibetan Medicine (TTM): a sandy beige mushroom Trametes robiniophila Murr, commonly known as Huaier/TCM as well as Ershiwuwei Songshi Wan and Qiwei Honghua Shusheng Wan, which both belong to TTM. We aimed to study the efficacy of TTM and TCM in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) in vitro. TCM and TTM were tested either as a monotherapy, or in combination with standard therapeutics: sorafenib for HCC treatment and gemcitabine for CCA. We also discovered a protective mechanism behind the most successful therapeutic combinations. The results demonstrated that TCM and TTM inhibited the proliferation of cancer cells in a time- and dose-dependent manner. The results were compared to classical chemotherapeutics currently used in the clinic: sorafenib for HCC and gemcitabine for CCA. In HCC settings, a combination of Huaier (16 mg/ml) with half of the human plasma concentration of sorafenib, Qiwei Honghua Shusheng Wan (1 mg/ml) monotherapy as well as its combination with half or even a quarter dose of the human plasma concentration of sorafenib represented the most efficient treatments, inhibiting the growth of HCC cells more effectively than the standard therapy. The inhibitory mechanism relied on a strong induction of apoptosis. In CCA settings, Ershiwuwei Songshi Wan and Qiwei Honghua Shusheng Wan as monotherapies or in combination with very low doses of gemcitabine inhibited the growth of CCA cells more efficiently than the standard therapy. Importantly, Ershiwuwei Songshi Wan at the 8 and 16 mg/ml concentrations and Qiwei Honghua Shusheng Wan at the 4 mg/ml concentration were efficacious with gemcitabine applied at massively reduced concentrations. The protective mechanism in CCA relied on a strong induction of early and late apoptosis. Cellular senescence and necroptosis were not associated with protection against HCC/CCA. Combination therapy with TCM or TTM allowed for a dose reduction of standard chemotherapeutics. This is especially important as both chemotherapeutic drugs show strong side effects in patients. The reduction of chemotherapeutics and the synergistic effect observed while applying them in combination with TCM and TTM has strong perspectives for the clinic and patients suffering from HCC and CCA.

4.
Oncogene ; 41(14): 2039-2053, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35173308

RESUMO

Primary liver cancer (PLC) comprising hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represents the third deadliest cancer worldwide with still insufficient treatment options. We have previously found that CD4 T helper 1 (Th1) response is indispensable for the protection against PLC. In the present research, we aimed to test the potent inducers of Th1 responses, live-attenuated Listeria monocytogenes ∆actA/∆inlB strain as preventive/therapeutic vaccine candidate in liver fibrosis, HCC, and CCA. Studies were performed using autochthonous models of HCC and CCA, highly reflecting human disease. L. monocytogenes ∆actA/∆inlB demonstrated strong safety/efficacy in premalignant and malignant liver diseases. The protective mechanism relied on the induction of strong tumor-specific immune responses that keep the development of hepatobiliary cancers under control. Combination therapy, comprising Listeria vaccination and a checkpoint inhibitor blockade significantly extended the survival of HCC-bearing mice even at the advanced stages of the disease. This is the first report on the safety and efficacy of Listeria-based vaccine in liver fibrosis, as well as the first proof of principle study on Listeria-based vaccines in CCA. Our study paves the way for the use of live-attenuated Listeria as safe and efficient vaccine and a potent inducer of protective immune responses in liver fibrosis and hepatobiliary malignancies.


Assuntos
Vacinas Anticâncer , Carcinoma Hepatocelular , Listeria monocytogenes , Neoplasias Hepáticas , Animais , Vacinas Anticâncer/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/prevenção & controle , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/prevenção & controle , Camundongos , Vacinas Atenuadas
5.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G142-G153, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851733

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, which is not sensitive to radiotherapy and chemotherapy and very often experiences postoperative relapse. In this regard, effective screening of liver cancer is considered as the most important and urgent task. The aim of our study was to determine whether N-methyl-D-aspartate receptor (NMDAR) and, in particular, its subunits, can serve as biomarkers to distinguish the precancerous liver at early stages of liver fibrosis. We assessed the development of HCC after 10, 15, and 22 wk using a HCC rat model. The expression of NMDAR subunits was monitored at different stages of HCC by means of immunohistochemistry combined with epifluorescence microscopy imaging, Western blotting, and direct bisulfite sequencing. NMDAR subunits were not found in healthy liver tissues. In contrast, NMDAR subunits, in particular NR1 and NR2B, appeared at the stage of severe liver fibrosis (precancerous liver disease) in rats and were expressed during the development of HCC in rats and mice. Using the direct bisulfite sequencing, we detected that increased expression of NMDAR directly correlated with the demethylation of CpG islands in the promoter region of genes encoding receptor subunits. The obtained results confirmed that NMDAR subunits can serve as new biomarkers of precancerous liver disease, severe fibrosis, and its progression towards HCC.NEW & NOTEWORTHY We have shown NMDAR expression in cell transformation process at early stages of cancer, specifically HCC. The aim of our study was to define the disease stages from precancerous liver disease towards liver cancer progression when NMDAR subunits were expressed/detected. A fibrosis/HCC rat model, immunohistochemistry combined with epifluorescence microscopy imaging, Western blotting was used. The dynamics of appearance of NMDAR subunits, their expression and methylation status during the development of HCC were shown and discussed.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Animais , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , RNA Mensageiro/metabolismo , Ratos , Roedores/genética , Roedores/metabolismo
6.
Oncoimmunology ; 10(1): 1874159, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33628620

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver with a very poor prognosis and constantly growing incidence. Among other primary risks of HCC, metabolic disorders and obesity have been extensively investigated over recent decades. The latter can promote nonalcoholic fatty liver disease (NAFLD) leading to the inflammatory form of nonalcoholic steatohepatitis (NASH), that, in turn, promotes HCC. Molecular determinants of this pathogenic progression, however, remain largely undefined. In this study, we have focussed on the investigation of α-dicarbonyl compounds (α-dC), highly reactive and tightly associated with overweight-induced metabolic disorders, and studied their potential role in NAFLD and progression toward HCC using murine models. NAFLD was induced using high-fat diet (HFD). Autochthonous HCC was induced using transposon-based stable intrahepatic overexpression of oncogenic NRASG12V in mice lacking p19Arf tumor suppressor. Our study demonstrates that the HFD regimen and HCC resulted in strong upregulation of α-dC in the liver, heart, and muscles. In addition, an increase in α-dC was confirmed in sera of NAFLD and NASH patients. Furthermore, higher expression of the receptor for advanced glycation products (RAGE) was detected exclusively on immune cells and not on stroma cells in livers of mice with liver cancer progression. Our work confirms astable interplay of liver inflammation, carbonyl stress mediated by α-dC, and upregulated RAGE expression on CD8+ Tand natural killer (NK) cells in situ in NAFLD and HCC, as key factors/determinants in liver disease progression. The obtained findings underline the role of α-dC and RAGE+CD8+ Tand RAGE+ NK cells as biomarkers and candidates for a local therapeutic intervention in NAFLD and malignant liver disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/etiologia , Progressão da Doença , Produtos Finais de Glicação Avançada , Humanos , Camundongos , Receptor para Produtos Finais de Glicação Avançada/genética
7.
Front Bioeng Biotechnol ; 9: 817768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35198551

RESUMO

The natural polymer, lignin, possesses unique biodegradable and biocompatible properties, making it highly attractive for the generation of nanoparticles for targeted cancer therapy. In this study, we investigated spruce and eucalyptus lignin nanoparticles (designated as S-and E-LNPs, respectively). Both LNP types were generated from high-molecular-weight (M w ) kraft lignin obtained as insoluble residues after a five-step solvent fractionation approach, which included ethyl acetate, ethanol, methanol, and acetone. The resulting S-and E-LNPs ranged in size from 16 to 60 nm with uniform spherical shape regardless of the type of lignin. The preparation of LNPs from an acetone-insoluble lignin fraction is attractive because of the use of high-M w lignin that is otherwise not suitable for most polymeric applications, its potential scalability, and the consistent size of the LNPs, which was independent of increased lignin concentrations. Due to the potential of LNPs to serve as delivery platforms in liver cancer treatment, we tested, for the first time, the efficacy of newly generated E-LNPs and S-LNPs in two types of primary liver cancer, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), in vitro. Both S-LNPs and E-LNPs inhibited the proliferation of HCC cells in a dose-dependent manner and did not affect CCA cell line growth. The inhibitory effect toward HCC was more pronounced in the E-LNP-treated group and was comparable to the standard therapy, sorafenib. Also, E-LNPs induced late apoptosis and necroptosis while inhibiting the HCC cell line. This study demonstrated that an elevated number of carbohydrates on the surface of the LNPs, as shown by NMR, seem to play an important role in mediating the interaction between LNPs and eukaryotic cells. The latter effect was most pronounced in E-LNPs. The novel S- and E-LNPs generated in this work are promising materials for biomedicine with advantageous properties such as small particle size and tailored surface functionality, making them an attractive and potentially biodegradable delivery tool for combination therapy in liver cancer, which still has to be verified in vivo using HCC and CCA models.

8.
Front Immunol ; 11: 1280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849491

RESUMO

The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.


Assuntos
Biomarcadores , Neoplasias/etiologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores Tumorais , Senescência Celular , Terapia Combinada , Gerenciamento Clínico , Progressão da Doença , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunoterapia Adotiva , Técnicas de Diagnóstico Molecular , Terapia de Alvo Molecular , Neoplasias/diagnóstico , Neoplasias/terapia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Especificidade de Órgãos , Medicina de Precisão/métodos , Prognóstico
9.
Int J Mol Sci ; 19(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200513

RESUMO

The respiratory tract is constantly exposed to the environment and displays a favorable niche for colonizing microorganisms. However, the effects of respiratory bacterial carriage on the immune system and its implications for secondary responses remain largely unclear. We have employed respiratory carriage with Bordetella bronchiseptica as the underlying model to comprehensively address effects on subsequent immune responses. Carriage was associated with the stimulation of Bordetella-specific CD4⁺, CD8⁺, and CD4⁺CD25⁺Foxp3⁺ T cell responses, and broad transcriptional activation was observed in CD4⁺CD25⁺ T cells. Importantly, transfer of leukocytes from carriers to acutely B. bronchiseptica infected mice, resulted in a significantly increased bacterial burden in the recipient's upper respiratory tract. In contrast, we found that respiratory B. bronchiseptica carriage resulted in a significant benefit for the host in systemic infection with Listeria monocytogenes. Adaptive responses to vaccination and influenza A virus infection, were unaffected by B. bronchiseptica carriage. These data showed that there were significant immune modulatory processes triggered by B. bronchiseptica carriage, that differentially affect subsequent immune responses. Therefore, our results demonstrated the complexity of immune regulation induced by respiratory bacterial carriage, which can be beneficial or detrimental to the host, depending on the pathogen and the considered compartment.


Assuntos
Bordetella bronchiseptica/imunologia , Coinfecção/imunologia , Infecções Respiratórias/imunologia , Linfócitos T Reguladores/microbiologia , Vacinação , Imunidade Adaptativa/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Infecções por Bordetella/sangue , Infecções por Bordetella/imunologia , Infecções por Bordetella/microbiologia , Infecções por Bordetella/prevenção & controle , Bordetella bronchiseptica/genética , Antígenos CD5/análise , Portador Sadio/imunologia , Portador Sadio/microbiologia , Coinfecção/sangue , Coinfecção/microbiologia , Coinfecção/prevenção & controle , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Listeria monocytogenes/genética , Listeria monocytogenes/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções Respiratórias/sangue , Infecções Respiratórias/prevenção & controle , Linfócitos T Reguladores/imunologia
10.
J Immunol ; 201(5): 1400-1411, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030325

RESUMO

Glucose-derived mannose is a common component of glycoproteins, and its deficiency leads to a severe defect in protein glycosylation and failure in basic cell functions. In this work, we show that mannose metabolism is essential for IFN-γ production by mouse Th1 cells. In addition, we demonstrate that the susceptibility of Th1 cells to glycolysis restriction depends on the activation conditions and that under diminished glycolytic flux, mannose availability becomes the limiting factor for IFN-γ expression. This study unravels a new role for glucose metabolism in the differentiation process of Th1 cells, providing a mechanistic explanation for the importance of glycolysis in immune cell functions.


Assuntos
Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Glicólise/imunologia , Interferon gama/imunologia , Manose/imunologia , Células Th1/imunologia , Animais , Camundongos , Células Th1/citologia
11.
Hum Vaccin Immunother ; 13(12): 2931-2952, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-29112462

RESUMO

Hepatobiliary and pancreatic cancers along with other gastrointestinal malignancies remain the leading cause of cancer-related deaths worldwide. Strategies developed in the recent years on immunotherapy and cancer vaccines in the setting of primary liver cancer as well as in pancreatic cancer are the scope of this review. Significance of orthotopic and autochthonous animal models which mimic and/or closely reflect human malignancies allowing for a prompt and trustworthy analysis of new therapeutics is underlined. Combinational approaches that on one hand, specifically target a defined cancer-driving pathway, and on the other hand, restore the functions of immune cells, which effector functions are often suppressed by a tumor milieu, are shown to have the strongest perspectives and future directions. Among combinational immunotherapeutic approaches a personalized- and individual cancer case-based therapy is of special importance.


Assuntos
Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Neoplasias Hepáticas/terapia , Neoplasias Pancreáticas/terapia , Animais , Vacinas Anticâncer/isolamento & purificação , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Humanos
12.
Cancer Cell ; 30(4): 533-547, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27728804

RESUMO

Oncogene-induced senescence causes hepatocytes to secrete cytokines, which induce their immune-mediated clearance to prevent tumor initiation, a process termed "senescence surveillance." However, senescent hepatocytes give rise to hepatocellular carcinomas (HCCs), if the senescence program is bypassed or if senescent cells are not cleared. Here, we show context-specific roles for CCR2+ myeloid cells in liver cancer. Senescence surveillance requires the recruitment and maturation of CCR2+ myeloid cells, and CCR2 ablation caused outgrowth of HCC. In contrast, HCC cells block the maturation of recruited myeloid precursors, which, through NK cell inhibition, promote growth of murine HCC and worsen the prognosis and survival of human HCC patients. Thus, while senescent hepatocyte-secreted chemokines suppress liver cancer initiation, they may accelerate the growth of fully established HCC.


Assuntos
Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Animais , Carcinoma Hepatocelular/patologia , Senescência Celular/imunologia , Progressão da Doença , Feminino , Humanos , Vigilância Imunológica , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Cancer Res ; 76(18): 5550-61, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27488521

RESUMO

Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related deaths and is reported to be resistant to chemotherapy caused by tumor-initiating cells. These tumor-initiating cells express stem cell markers. An accumulation of tumor-initiating cells can be found in 2% to 50% of all HCC and is correlated with a poor prognosis. Mechanisms that mediate chemoresistance include drug export, increased metabolism, and quiescence. Importantly, the mechanisms that regulate quiescence in tumor-initiating cells have not been analyzed in detail so far. In this research we have developed a single cell tracking method to follow up the fate of tumor-initiating cells during chemotherapy. Thereby, we were able to demonstrate that mCXCL1 exerts cellular state-specific effects regulating the resistance to chemotherapeutics. mCXCL1 is the mouse homolog of the human IL8, a chemokine that correlates with poor prognosis in HCC patients. We found that mCXCL1 blocks differentiation of premalignant cells and activates quiescence in tumor-initiating cells. This process depends on the activation of the mTORC1 kinase. Blocking of the mTORC1 kinase induces differentiation of tumor-initiating cells and allows their subsequent depletion using the chemotherapeutic drug doxorubicin. Our work deciphers the mCXCL1-mTORC1 pathway as crucial in liver cancer stem cell maintenance and highlights it as a novel target in combination with conventional chemotherapy. Cancer Res; 76(18); 5550-61. ©2016 AACR.


Assuntos
Carcinoma Hepatocelular/patologia , Diferenciação Celular/fisiologia , Quimiocina CXCL1/metabolismo , Neoplasias Hepáticas/patologia , Complexos Multiproteicos/metabolismo , Células-Tronco Neoplásicas/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas Culina , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase
14.
Nat Med ; 22(7): 744-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27213815

RESUMO

MYC oncoproteins are involved in the genesis and maintenance of the majority of human tumors but are considered undruggable. By using a direct in vivo shRNA screen, we show that liver cancer cells that have mutations in the gene encoding the tumor suppressor protein p53 (Trp53 in mice and TP53 in humans) and that are driven by the oncoprotein NRAS become addicted to MYC stabilization via a mechanism mediated by aurora kinase A (AURKA). This MYC stabilization enables the tumor cells to overcome a latent G2/M cell cycle arrest that is mediated by AURKA and the tumor suppressor protein p19(ARF). MYC directly binds to AURKA, and inhibition of this protein-protein interaction by conformation-changing AURKA inhibitors results in subsequent MYC degradation and cell death. These conformation-changing AURKA inhibitors, with one of them currently being tested in early clinical trials, suppressed tumor growth and prolonged survival in mice bearing Trp53-deficient, NRAS-driven MYC-expressing hepatocellular carcinomas (HCCs). TP53-mutated human HCCs revealed increased AURKA expression and a positive correlation between AURKA and MYC expression. In xenograft models, mice bearing TP53-mutated or TP53-deleted human HCCs were hypersensitive to treatment with conformation-changing AURKA inhibitors, thus suggesting a therapeutic strategy for this subgroup of human HCCs.


Assuntos
Aurora Quinase A/metabolismo , Carcinoma Hepatocelular/genética , Hepatócitos/metabolismo , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Deleção de Genes , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Mutação , Proteína Oncogênica p21(ras)/metabolismo , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Gastroenterology ; 151(2): 338-350.e7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27210037

RESUMO

BACKGROUND & AIMS: Even after potentially curative R0 resection, patients with pancreatic ductal adenocarcinoma (PDAC) have a poor prognosis owing to high rates of local recurrence and metastasis to distant organs. However, we have no suitable transgenic animal models for surgical interventions. METHODS: To induce formation of pancreatic tumor foci, we electroporated oncogenic plasmids into pancreata of LSL-KrasG12D × p53fl/fl mice; mutant Kras was expressed in p53fl/fl mice using a sleeping beauty transposon. We co-delivered a transposon encoding a constitutively active form of Akt2 (myrAkt2). Carcinogenesis and histopathologic features of tumors were examined. Metastasis was monitored by bioluminescence imaging. Tumors were resected and mice were given gemcitabine, and tumor recurrence patterns and survival were determined. Immune cells were collected from resection sites and analyzed by flow cytometry and in depletion experiments. RESULTS: After electroporation of oncogenic plasmids, mice developed a single pancreatic tumor nodule with histopathologic features of human PDAC. Pancreatic tumors that expressed myrAkt2 infiltrated the surrounding pancreatic tissue and neurons and became widely metastatic, reflecting the aggressive clinical features of PDAC in patients. Despite early tumor resection, mice died from locally recurring and distant tumors, but adjuvant administration of gemcitabine after tumor resection prolonged survival. In mice given adjuvant gemcitabine or vehicle, gemcitabine significantly inhibited local recurrence of tumors, but not metastasis to distant organs, similar to observations in clinical trials. Gemcitabine inhibited accumulation of CD11b+Gr1intF4/80int myeloid-derived suppressor cells at the resection margin and increased the number of natural killer (NK) cells at this location. NK cells but not T cells were required for gemcitabine-mediated antitumor responses. CONCLUSIONS: Gemcitabine administration after resection of pancreatic tumors in mice activates NK cell-mediated antitumor responses and inhibits local recurrence of tumors, consistent with observations from patients with PDAC. Transgenic mice with resectable pancreatic tumors might be promising tools to study adjuvant therapy strategies for patients.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Células Matadoras Naturais/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Terapia Combinada , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Camundongos , Invasividade Neoplásica , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Gencitabina
16.
Arthritis Rheumatol ; 68(10): 2476-86, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27111864

RESUMO

OBJECTIVE: The spondyloarthritides (SpA) are a group of rheumatic diseases characterized by ossification and inflammation of entheseal tissue, the region where tendon attaches to bone. Interleukin-23 (IL-23) is involved in the pathogenesis of SpA by acting on IL-23 receptor (IL-23R) expressed on enthesis-resident lymphocytes. Upon IL-23 binding, CD3+CD4-CD8- tissue-resident lymphocytes secrete IL-17A and IL-22, leading to inflammation, bone loss, and ossification. Knowledge about enthesis-resident lymphocytes remains fragmentary, and the contribution of entheseal γ/δ T cells in particular is not clear. This study was undertaken to investigate the presence of γ/δ T cells in the enthesis. METHODS: We used 2-photon microscopy and flow cytometry to analyze entheseal lymphocytes from C57BL/6, Tcrd-H2BeGFP, Rorc-GFP, and IL-23R-eGFP mice. To analyze entheseal γ/δ T cells in IL-23-induced inflammation, Tcrd-H2BeGFP mice were crossed with mice of the susceptible B10.RIII background. Hydrodynamic injection of IL-23 minicircle DNA was performed for overexpression of IL-23 and induction of inflammation. Light-sheet fluorescence microscopy was used to visualize arthritic inflammation. RESULTS: Activated Vγ6+CD27- γ/δ T cells were abundant in uninflamed entheseal tissue and constituted the large majority of retinoic acid receptor-related orphan nuclear receptor γt (RORγt)+IL-23R+ enthesis-resident lymphocytes. Fetal thymus-dependent γ/δ T cells were the main source of IL-17A at the enthesis. Under inflammatory conditions, γ/δ T cells increased in number at the Achilles tendon enthesis, aortic root, and adjacent to the ciliary body. CONCLUSION: Entheseal γ/δ T cells are derived from fetal thymus and are maintained as self-renewing tissue-resident cells. As main IL-17A producers within tissues exposed to mechanical stress including enthesis, γ/δ T cells are key players in the pathogenesis of IL-23-induced local inflammation.


Assuntos
Tendão do Calcâneo/imunologia , Valva Aórtica/imunologia , Corpo Ciliar/imunologia , Interleucina-23/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Espondiloartropatias/imunologia , Subpopulações de Linfócitos T/imunologia , Tendão do Calcâneo/patologia , Animais , Articulação do Tornozelo/imunologia , Articulação do Tornozelo/patologia , Valva Aórtica/patologia , Corpo Ciliar/patologia , Entesopatia/imunologia , Entesopatia/patologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Interleucina-17/imunologia , Interleucinas/imunologia , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Espondiloartropatias/patologia , Subpopulações de Linfócitos T/patologia , Microtomografia por Raio-X , Interleucina 22
17.
Cell ; 153(2): 389-401, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23582328

RESUMO

The liver harbors a distinct capacity for endogenous regeneration; however, liver regeneration is often impaired in disease and therefore insufficient to compensate for the loss of hepatocytes and organ function. Here we describe a functional genetic approach for the identification of gene targets that can be exploited to increase the regenerative capacity of hepatocytes. Pools of small hairpin RNAs (shRNAs) were directly and stably delivered into mouse livers to screen for genes modulating liver regeneration. Our studies identify the dual-specific kinase MKK4 as a master regulator of liver regeneration. MKK4 silencing robustly increased the regenerative capacity of hepatocytes in mouse models of liver regeneration and acute and chronic liver failure. Mechanistically, induction of MKK7 and a JNK1-dependent activation of the AP1 transcription factor ATF2 and the Ets factor ELK1 are crucial for increased regeneration of hepatocytes with MKK4 silencing.


Assuntos
Diferenciação Celular , Hepatócitos/citologia , Hepatócitos/fisiologia , Fígado/fisiologia , MAP Quinase Quinase 4/genética , Animais , Ciclo Celular , Elementos de DNA Transponíveis , Fibrose , Técnicas de Silenciamento de Genes , Hidrolases/genética , Hidrolases/metabolismo , Fígado/citologia , Fígado/lesões , Fígado/patologia , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/metabolismo , Camundongos , Interferência de RNA , RNA Interferente Pequeno/metabolismo
18.
Environ Microbiol ; 15(1): 64-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22676396

RESUMO

Bordetella bronchiseptica is an important pathogen causing a number of veterinary respiratory syndromes in agriculturally important and food-producing confinement-reared animals, resulting in great economic losses annually amounting to billions of euros worldwide. Currently available live vaccines are incompletely satisfactory in terms of efficacy and safety. An efficient vaccine for livestock animals would allow reducing the application of antibiotics, thereby preventing the massive release of pharmaceuticals into the environment. Here, we describe two new potential vaccine strains based on the BB7865 strain. Two independent attenuating mutations were incorporated by homologous recombination in order to make negligible the risk of recombination and subsequent reversion to the virulent phenotype. The mutations are critical for bacterial metabolism, resistance to oxidative stress, intracellular survival and in vivo persistence. The resulting double mutants BB7865 risA aroA and BB7865 risA dapE were characterized as promising vaccine candidates, which are able to confer protection against colonization of the lower respiratory tract after sublethal challenge with the wild-type strain.


Assuntos
Vacinas Bacterianas/imunologia , Infecções por Bordetella/imunologia , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/imunologia , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/genética , Bordetella bronchiseptica/metabolismo , Linhagem Celular , Feminino , Células HeLa , Humanos , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana/genética , Mutação , Neutrófilos/fisiologia , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
19.
Oncoimmunology ; 1(3): 398-399, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22737629

RESUMO

Here we discuss a recently published study from our group on how a continuous CD4 T-cell dependent immune clearance of premalignant senescent cells, designated "senescence surveillance," restricts liver cancer development.

20.
Gut ; 61(12): 1733-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22267597

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a typical inflammation-associated cancer, but may also provoke antitumour immune responses whose significance and underlying mechanisms are incompletely understood. OBJECTIVE: To characterise immune responses in the diethylnitrosamine (DEN)-liver cancer mouse model. DESIGN: Tumour development and immune cell functions upon DEN treatment were compared between C57BL/6 wild-type (WT), chemokine scavenging receptor D6-deficient, B cell- (Igh6), CD4 T cell- (MHC-II) and T-/B cell-deficient (Rag1) mice. Relevance for human HCC was tested by comparing gene array results from 139 HCC tissues. RESULTS: The induction of premalignant lesions after 24 weeks and of HCC-like tumours after 42 weeks by DEN in mice was accompanied by significant leucocyte infiltration in the liver and upregulation of distinct intrahepatic chemokines (CCL2, CCL5, CXCL9). Macrophages and CD8 (cytotoxic) T cells were most prominently enriched in tumour-bearing livers, similar to samples from human HCC. Myeloid-derived suppressor cells (MDSC) increased in extrahepatic compartments of DEN-treated mice (bone marrow, spleen). The contribution of immune cell subsets for DEN-induced hepatocarcinogenesis was functionally dissected. In D6(-/-) mice, which lack the chemokine scavenging receptor D6, hepatic macrophage infiltration was significantly increased, but tumour formation and progression did not differ from that of WT mice. In contrast, progression of hepatic tumours (numbers, diameters, tumour load) was strikingly enhanced in T-/B cell-deficient Rag1(-/-) mice upon DEN treatment. When mice deficient for B cells (Igh6(-/-), µMT) or major histocompatibility complex II were used, the data indicated that T cells prevent initial tumour formation, while B cells critically limit growth of established tumours. Accordingly, in tumour-bearing mice antibody production against liver-related model antigen was enhanced, indicating tumour-associated B cell activation. In agreement, T and B cell pathways were differentially regulated in gene array analyses from 139 human HCC tissues and significantly associated with patients' survival. CONCLUSIONS: Distinct axes of the adaptive immune system, which are also prognostic in human HCC, actively suppress DEN-induced hepatocarcinogenesis by controlling tumour formation and progression.


Assuntos
Imunidade Adaptativa , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas Experimentais/imunologia , Animais , Linfócitos B/metabolismo , Biomarcadores/metabolismo , Carcinógenos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CXCL9/metabolismo , Dietilnitrosamina , Progressão da Doença , Humanos , Leucócitos/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/patologia , Análise de Sobrevida , Linfócitos T Citotóxicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...