Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R55-R68, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33085911

RESUMO

In fishes, branchial cytosolic carbonic anhydrase (CA) plays an important role in ion and acid-base regulation. The Ca17a isoform in zebrafish (Danio rerio) is expressed abundantly in Na+-absorbing/H+-secreting H+-ATPase-rich (HR) cells. The present study aimed to identify the role of Ca17a in ion and acid-base regulation across life stages using CRISPR/Cas9 gene editing. However, in preliminary experiments, we established that ca17a knockout is lethal with ca17a-/- mutants exhibiting a significant decrease in survival beginning at ∼12 days postfertilization (dpf) and with no individuals surviving past 19 dpf. Based on these findings, we hypothesized that ca17a-/- mutants would display alterations in ion and acid-base balance and that these physiological disturbances might underlie their early demise. Na+ uptake rates were significantly increased by up to 300% in homozygous mutants compared with wild-type individuals at 4 and 9 dpf; however, whole body Na+ content remained constant. While Cl- uptake was significantly reduced in ca17a-/- mutants, Cl- content was unaffected. Reduction of CA activity by Ca17a morpholino knockdown or ethoxzolamide treatments similarly reduced Cl- uptake, implicating Ca17a in the mechanism of Cl- uptake by larval zebrafish. H+ secretion, O2 consumption, CO2 excretion, and ammonia excretion were generally unaltered in ca17a-/- mutants. In conclusion, while the loss of Ca17a caused marked changes in ion uptake rates, providing strong evidence for a Ca17a-dependent Cl- uptake mechanism, the underlying causes of the lethality of this mutation in zebrafish remain unclear.


Assuntos
Equilíbrio Ácido-Base , Anidrases Carbônicas/deficiência , Cloretos/metabolismo , Técnicas de Inativação de Genes , Sódio/metabolismo , Proteínas de Peixe-Zebra/deficiência , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Anidrases Carbônicas/genética , Concentração de Íons de Hidrogênio , Transporte de Íons , Mutação , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...