Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 246: 116198, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754154

RESUMO

With the aging of the population, the prevalence of osteoporosis (OP) is rising rapidly, making it an important public health concern. Early screening and effective treatment of OP are the primary challenges facing the management of OP today. Quanduzhong capsule (QDZ) is a single preparation composed of Eucommia ulmoides Oliv., which is included in the Pharmacopoeia of the People's Republic of China. It is used to treat OP in clinical practice, but its mechanisms are unclear. This study involved 30 patients with OP, 30 healthy controls (HC), and 28 OP patients treated with QDZ to identify potential biomarkers for the early diagnosis of OP and to investigate the potential mechanism of QDZ in treating OP. The serum samples were analyzed using targeted amino acid metabolomics. Significant differences in amino acid metabolism were identified between the OP cohort and the HC group, as well as between OP patients before and after QDZ treatment. Compared with HC, the serum levels of 14 amino acids in OP patients changed significantly. Kynurenine, arginine, citrulline, methionine, and their combinations are expected to be potential biomarkers for OP diagnosis. Notably, QDZ reversed the changes in levels of 10 amino acids in the serum of OP patients and significantly impacted numerous metabolic pathways during the treatment of OP. This study focuses on screening potential biomarkers for the early detection of OP, which offers a new insight into the mechanism study of QDZ in treating OP.


Assuntos
Aminoácidos , Biomarcadores , Medicamentos de Ervas Chinesas , Metabolômica , Osteoporose , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Biomarcadores/sangue , Metabolômica/métodos , Osteoporose/sangue , Osteoporose/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Masculino , Aminoácidos/sangue , Idoso , Cápsulas , Eucommiaceae , Estudos de Casos e Controles , Adulto
2.
J Chromatogr A ; 1719: 464732, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38387153

RESUMO

The extraction methods for traditional Chinese medicine (TCM) may have varying therapeutic effects on diseases. Currently, Pueraria lobata (PL) is mostly extracted with ethanol, but decoction, as a TCM extraction method, is not widely adopted. In this study, we present a strategy that integrates targeted metabolomics, 16 s rDNA sequencing technology and metagenomics for exploring the potential mechanism of the water extract of PL (PLE) in treating myocardial infarction (MI). Using advanced analytical techniques like ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we comprehensively characterized PLE's chemical composition. Further, we tested its efficacy in a rat model of MI induced by ligation of the left anterior descending branch of the coronary artery (LAD). We assessed cardiac enzyme levels and conducted echocardiograms. UPLC-MS/MS was used to compare amino acid differences in serum. Furthermore, we investigated fecal samples using 16S rDNA sequencing and metagenomic sequencing to study intestinal flora diversity and function. This study demonstrated PLE's effectiveness in reducing cardiac injury in LAD-ligated rats. Amino acid metabolomics revealed significant improvements in serum levels of arginine, citrulline, proline, ornithine, creatine, creatinine, and sarcosine in MI rats, which are key compounds in the arginine metabolism pathway. Enzyme-linked immunosorbent assay (ELISA) results showed that PLE significantly improved arginase (Arg), nitric oxide synthase (NOS), and creatine kinase (CK) contents in the liver tissue of MI rats. 16 s rDNA and metagenome sequencing revealed that PLE significantly improved intestinal flora imbalance in MI rats, particularly in taxa such as Tuzzerella, Desulfovibrio, Fournierella, Oscillibater, Harryflintia, and Holdemania. PLE also improved the arginine metabolic pathway in the intestinal microorganisms of MI rats. The findings indicate that PLE effectively modulates MI-induced arginine levels and restores intestinal flora balance. This study, the first to explore the mechanism of action of PLE in MI treatment considering amino acid metabolism and intestinal flora, expands our understanding of the potential of PL in MI treatment. It offers fresh insights into the mechanisms of PL, guiding further research and development of PL-based medicines.


Assuntos
Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Pueraria , Ratos , Animais , Arginina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Aminoácidos , DNA Ribossômico
3.
Microb Biotechnol ; 17(1): e14365, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983627

RESUMO

Heart failure (HF) is an advanced stage of most heart diseases. Some studies reported that Dengzhanshengmai (DZSM) capsule may improve HF, but its mechanisms are unclear. This study attempts to determine the function of DZSM in treating HF and investigates its potential mechanism. We demonstrated that DZSM can considerably reduce systemic inflammation, improve intestinal barrier functions and enhance cardiac functions in HF rats. Further investigations displayed that the beneficial effects of DZSM were related to the reduction of gut microbiota metabolite phenylacetylglutamine (PAGln) levels in serum and heart tissue. In addition, we demonstrated that PAGln can exacerbate the severity of HF in rats, and the serum PAGln levels in HF patients were higher than in healthy subjects. Moreover, by using microbial sequencing, we found that DZSM could alter the composition and function of the intestinal microbiota in HF rats, including decreased relative abundance of Turicibacter and Turicibacter_sp.TS3, and regulated the gene expression of PAGln synthesis-related enzymes. Therefore, our findings have contributed novel perspectives on the involvement of DZSM in treating HF, specifically in its regulation of intestinal flora and associated detrimental metabolites. Furthermore, our results have offered empirical evidence supporting the utilization of DZSM as a therapeutic approach for HF.


Assuntos
Microbioma Gastrointestinal , Insuficiência Cardíaca , Ratos , Humanos , Animais , Insuficiência Cardíaca/tratamento farmacológico , Glutamina/farmacologia , Inflamação
4.
J Pharm Biomed Anal ; 239: 115846, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039873

RESUMO

BACKGROUND: Shouhui Tongbian capsule (SHTB) has been widely used for the treatment of constipation. There are few studies on SHTB at present. The current study aimed to explore the effects of multi-components compatibility of SHTB for efficacy enhancement and toxicity reduction and evaluate its molecular biological mechanisms in the treatment of slow transit constipation (STC). METHODS: Ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to quantify 17 anthraquinone components in different compatible systems of SHTB. Network pharmacological analysis was used to probe the potential mechanisms of SHTB in treating STC. In addition, an animal experiment combined with western blot analysis was performed to further validate the predicted results. RESULTS: After compatibility, the dissolution of 13 components with good effects in treating constipation increased, while the dissolution of 3 components with hepatotoxicity decreased. Overall, 145 common targets of 13 synergistic components and constipation were identified. A synergistic component-target-disease network showed that chrysoobtusin, obtusifolin, emodin, obtusin and 2-hydroxyl emodin-1-methyl ether were the potential key synergistic components. A protein-protein interaction network analysis identified 91 targets, and an analysis of topological characteristics was conducted to confirm the core targets. Gene Ontology function revealed that the 13 synergistic components for the treatment of STC mainly played roles via protein phosphorylation, positive regulation of phosphorylation, phosphotransferase activity, kinase activity and protein kinase activity, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that these components were enriched in pathways in cancer, MAPK signaling pathway, IL-17 signaling pathway, NF-κB signaling pathway, etc. The results of animal experimental validation showed that SHTB significantly reduced the expression levels of p-p38 and p-ERK proteins in the colon tissue of the STC rats. CONCLUSION: This study preliminarily demonstrated that efficacy enhancement and toxicity reduction of SHTB could be achieved after compatibility, which expounded the connotation of compatibility theory of traditional Chinese medicine from the perspective of chemical composition, reflecting the rationality and scientificity of compatibility theory. Meanwhile, the study also revealed the core targets and potential molecular biological mechanisms of SHTB in the treatment of STC, which may serve as a reference for subsequent studies and clinical applications of SHTB.


Assuntos
Medicamentos de Ervas Chinesas , Emodina , Animais , Ratos , Farmacologia em Rede , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Constipação Intestinal/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Simulação de Acoplamento Molecular
5.
J Pharm Biomed Anal ; 239: 115830, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096633

RESUMO

BACKGROUND: Biyan Qingdu Granula (BYQD) is a traditional Chinese medicine (TCM) formula commonly used for post-radiotherapy treatment of nasopharyngeal carcinoma (NPC). Despite its extensive use, the underlying pharmacological mechanisms have yet to be fully elucidated. METHODS: UPLC/Q-TOF MS was used to comprehensively analyze the chemical composition of BYQD. Additionally, an everted gut sac model, coupled with UPLC/Q-TOF MS, was used to screen and identify the active ingredients. Subsequently, we conducted a network pharmacological analysis to delve into the potential mechanisms of these active ingredients. Molecular docking experiments were also performed to assess the interactions between active ingredients and potential core targets. RESULTS: The findings revealed the identification of 62 identical ingredients upon comparing the sample solution and intestinal absorbed solution of BYQD. We constructed a protein-protein interaction (PPI) network, which led to the identification of five core targets, namely, TP53, STAT3, MAPK1, SRC and AKT1. Through the construction of a drug-active ingredient-intersection target network, we identified Quercetin, Luteolin, Eupatilin, Magnoflorine, Acacetin and other compound as potential active ingredients. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that pathways in cancer, PI3K-Akt signaling pathway, lipid and atherosclerosis, proteoglycans in cancer, and the MAPK signaling pathway might play the key roles in the treatment of NPC after radiotherapy using BYQD. Molecular docking results corroborated strong binding activity between the putative core targets and the corresponding key active ingredients. CONCLUSION: This study provides a preliminary revelation of the active ingredients and potential pharmacological mechanisms of BYQD in the post-radiotherapy treatment of NPC. These findings establish a vital theoretical basis and serve as a scientific reference for the future investigating the pharmacological mechanisms and clinical application of BYQD.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Nasofaríngeas , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Cromatografia Líquida de Alta Pressão , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/radioterapia , Fosfatidilinositol 3-Quinases , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/radioterapia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
6.
Phytother Res ; 37(12): 5932-5946, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37697496

RESUMO

BACKGROUND AND AIM: Acute myocardial infarction (AMI) is a multifactorial disease with high mortality rate worldwide. Ethanol extract of Pueraria lobata (EEPL) has been widely used in treating cardiovascular diseases in China. This study aimed to explore the underlying therapeutic mechanism of EEPL in AMI rats. EXPERIMENTAL PROCEDURE: We first evaluated the anti-AMI efficacy of EEPL through immunohistochemistry staining and biochemical indexes. Then, UPLC-MS/MS, 16S rDNA, and shotgun metagenomic sequencing were used to analyze the alterations in bile acid metabolism and intestinal flora. Finally, the influence of EEPL on ilem bile acid metabolism, related enzymes expression, and transporter proteins expression in rats were verified by mass spectrometry image and ELISA. KEY RESULTS: The results showed that EEPL can reduce cardiac impairment in AMI rats. Besides, EEPL effectively increased bile acid levels and regulated gut microbiota disturbance in AMI rats via increasing CYP7A1 expression and restoring intestinal microbiota diversity, separately. Moreover, it can increase bile acids reabsorption and fecal excretion through inhibiting FXR-FGF15 signaling pathway and increasing OST-α expression, which associated with Lachnoclostridium. CONCLUSIONS AND IMPLICATIONS: Our findings demonstrated that EEPL alleviated AMI partially by remediating intestinal dysbiosis and promoting bile acid biosynthesis, which provided new targets for AMI treatment.


Assuntos
Microbioma Gastrointestinal , Infarto do Miocárdio , Pueraria , Ratos , Animais , Etanol , Cromatografia Líquida , Espectrometria de Massas em Tandem , Infarto do Miocárdio/tratamento farmacológico , Extratos Vegetais/farmacologia , Ácidos e Sais Biliares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...