Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1448724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290708

RESUMO

Objectives: Previous observational epidemiological studies have identified a potential association between inflammatory bowel disease (IBD) and sarcoidosis. Nonetheless, the precise biological mechanisms underlying this association remain unclear. Therefore, we adopted a Mendelian randomization (MR) approach to investigate the causal relationship between IBD with genetic susceptibility to sarcoidosis, as well as to explore the potential mediating role. Methods: The genetic associations were obtained from publicly available genome-wide association studies (GWASs) of European ancestry. The IBD dataset has 31,665 cases and 33,977 controls, consisting of 13,768 individuals with ulcerative colitis (UC) and 17,897 individuals with Crohn's disease (CD). The genetic associations of sarcoidosis with 4,854 cases and 446,523 controls. A bidirectional causality between IBD and sarcoidosis was implemented to be determined by a two-sample MR approach. The inverse variance weighted (IVW) method was utilized as the main statistical method, and a series of sensitivity analyses were performed to detect heterogeneity and horizontal pleiotropy. A two-step MR approach was used to investigate whether the mediating pathway from IBD to sarcoidosis was mediated by PBC. Results: The forward MR analysis indicated that genetic predisposition to IBD was significantly linked to an increased risk of sarcoidosis (OR = 1.088, 95% CI: 1.023-1.158, pIBD-sar = 7.498e-03). Similar causal associations were observed in CD (OR = 1.082, 95% CI: 1.028-1.138, pCD-sar = 2.397e-03) and UC (OR = 1.079, 95% CI: 1.006-1.158, pUC-sar = 0.034). Reverse MR analysis revealed that genetic susceptibility to sarcoidosis was correlated with an augmented risk of CD (OR = 1.306, 95% CI: 1.110-1.537, psar-CD = 1.290e-03) but not IBD or UC. The mediation analysis via two-step MR showed that the causal influence of IBD and CD on sarcoidosis effects was partly mediated by PBC, and the mediating effect was 0.018 (95% CI: 0.005-0.031, p = 7.596e-03) with a mediated proportion of 21.397% in IBD, and 0.014 (95% CI: 0.004-0.024, p = 7.800e-03) with a mediated proportion of 17.737% in CD. Conclusions: The MR analysis provided evidence substantiating the causal effect of IBD (CD and UC) on an increased risk of sarcoidosis, with PBC playing a mediating role in IBD and CD. However, sarcoidosis only enhances the risk of developing CD, but not IBD or UC. These findings illuminate the etiology of sarcoidosis and contribute to the management of IBD patients.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais , Cirrose Hepática Biliar , Análise da Randomização Mendeliana , Sarcoidose , Humanos , Sarcoidose/genética , Sarcoidose/epidemiologia , Sarcoidose/etiologia , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/etiologia , Cirrose Hepática Biliar/epidemiologia , Doenças Inflamatórias Intestinais/genética , Polimorfismo de Nucleotídeo Único , Doença de Crohn/genética , Fatores de Risco
2.
Gastroenterol Rep (Oxf) ; 12: goae084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246845

RESUMO

Background: Intestinal barrier defect is an essential inflammatory bowel disease (IBD) pathogenesis. Mitochondrial dysfunction results in energy deficiency and oxidative stress, which contribute to the pathogenesis of IBD. ß-arrestin1 (ARRB1) is a negative regulator that promotes G protein-coupled receptors desensitization, endocytosis, and degradation. However, its role in maintaining the intestinal barrier remains unclear. Methods: Dextran sulfate sodium-induced colitis was performed in ARRB1 knockout and wild-type mice. Intestinal permeability and tight junction proteins were measured to evaluate the intestinal barrier. Mitochondria function and mitophagic flux in mice and cell lines were detected. Finally, the interaction between ARRB1 and mitofusin 2 was investigated by co-immunoprecipitation and dual luciferase assay. Results: We identified that ARRB1 protected the intestinal tight junction barrier against experimental colitis in vivo. ARRB1 deficiency was accompanied by abnormal mitochondrial morphology, lower adenosine triphosphate (ATP) production, and severe oxidative stress. In vitro, the knockdown of ARRB1 reduced ATP levels and mitochondrial membrane potential while increasing reactive oxygen species levels and oxidative stress. Upon ARRB1 ablation, mitophagy was inhibited, accompanied by decreased LC3BII, phosphatase and tension homologue-induced protein kinase1 (PINK1), and parkin, but increased p62 expression. Mitophagy inhibition via PINK1 siRNA or mitochondrial division inhibitor 1 impaired ARRB1-mediated tight junction protection. The interaction of ARRB1 with E2F1 activated mitophagy by enhancing the transcription of mitofusin 2. Conclusions: Our results suggest that ARRB1 is critical to maintaining the intestinal tight junction barrier by promoting mitophagy. These results reveal a novel link between ARRB1 and the intestinal tight junction barrier, which provides theoretical support for colitis treatment.

3.
Front Endocrinol (Lausanne) ; 15: 1376139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872961

RESUMO

Background: Previous observational epidemiological studies have suggested a potential association between thyroid function and inflammatory bowel disease (IBD). However, the findings remain inconclusive, and whether this association is causal remains uncertain. The objective of this study is to investigate the causal association between thyroid function and IBD. Methods: Genome-wide association studies (GWAS) involving seven indicators of thyroid function, IBD, and 41 cytokines were analyzed. Bidirectional two-sample Mendelian randomization (MR) and multivariable MR were conducted to examine the causal relationship between thyroid function and IBD and to explore the potential mechanisms underlying the associations. Results: Genetically determined hypothyroidism significantly reduced the risk of CD (odds ratio [OR] = 0.761, 95% CI: 0.655-0.882, p < 0.001). Genetically determined reference-range TSH was found to have a suggestive causal effect on IBD (OR = 0.931, 95% CI: 0.888-0.976, p = 0.003), (Crohn disease) CD (OR = 0.915, 95% CI: 0.857-0.977, p = 0.008), and ulcerative colitis (UC) (OR =0.910, 95% CI: 0.830-0.997, p = 0.043). In reverse MR analysis, both IBD and CD appeared to have a suggestive causal effect on the fT3/fT4 ratio (OR = 1.002, p = 0.013 and OR = 1.001, p = 0.015, respectively). Among 41 cytokines, hypothyroidism had a significant impact on interferon-inducible protein-10 (IP-10) (OR = 1.465, 95% CI: 1.094-1.962, p = 0.010). The results of multivariable MR showed that IP-10 may mediate the causal effects of hypothyroidism with CD. Conclusion: Our results suggest that an elevated TSH level reduces the risk of CD, with IP-10 potentially mediating this association. This highlights the pituitary-thyroid axis could serve as a potential therapeutic strategy for CD.


Assuntos
Citocinas , Estudo de Associação Genômica Ampla , Hipotireoidismo , Doenças Inflamatórias Intestinais , Glândula Tireoide , Humanos , Citocinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Glândula Tireoide/metabolismo , Análise da Randomização Mendeliana , Testes de Função Tireóidea , Polimorfismo de Nucleotídeo Único , Tireotropina/sangue , Masculino
4.
Cell Death Discov ; 7(1): 374, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34864819

RESUMO

Berberine (BBR) has been explored as a potential anti-liver fibrosis agent, but the underlying mechanisms are unknown. In the current study, we aimed to investigate the molecular mechanisms underlying the effect of BBR against liver fibrogenesis in thioacetamide (TAA) and carbon tetrachloride (CCl4) induced mouse liver fibrosis. In addition to i.p. injection with TAA or CCl4, mice in the treatment group received BBR intragastrically. Concurrently, combined with TAA and BBR treatment, mice in the inhibitor group were injected i.p. with ferrostatin-1 (Fer-1). Hepatic stellate cells (HSCs) were also used in the study. Our results showed that BBR obviously alleviated mouse liver fibrosis and restored mouse liver function; however, the pharmacological effects of BBR against liver fibrosis were significantly diminished by Fer-1 treatment. Mechanically, BBR impaired the autophagy-lysosome pathway (ALP) and increased cell reactive oxygen species (ROS) production in HSCs. ROS accelerated the breakdown of the iron-storage protein ferritin and sped up iron release from ferritin, which resulted in redox-active iron accumulation in HSCs. Lipid peroxidation and glutathione (GSH) depletion triggered by the Fenton reaction promoted ferroptosis and attenuated liver fibrosis. Furthermore, impaired autophagy enhanced BBR-mediated ferritin proteolysis to increase cellular ferrous overload via the ubiquitin-proteasome pathway (UPS) in HSCs and triggered HSC ferroptosis. Collectively, BBR alleviated liver fibrosis by inducing ferrous redox to activate ROS-mediated HSC ferroptosis. Our findings may be exploited clinically to provide a potential novel therapeutic strategy for liver fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA