Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(48): 25411-25418, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34523792

RESUMO

Single-phase formation of active metal oxides on supports has been vigorously pursued in many catalytic applications to suppress undesired reactions and to determine direct structure-property relationships. However, this is difficult to achieve in nanoscale range because the effect of non-uniform metal-support interfaces becomes dominant in the overall catalyst growth, leading to the nucleation of various metastable oxides. Herein, we develop a supported single-phase corundum-Rh2 O3 (I) nanocatalyst by utilizing controlled interaction between metal oxide and h-BN support. Atomic-resolution electron microscopy and first-principle calculation reveal that single-phase formation occurs via uniform and preferential attachment of Rh2 O3 (I) (110) seed planes on well-defined h-BN surface after decomposition of rhodium precursor. By utilizing the Rh/h-BN catalyst in methane partial oxidation, syngas is successfully produced solely following the direct route with keeping a H2 /CO ratio of 2, which makes it ideal for most downstream chemical processes.

2.
Chem Commun (Camb) ; 57(27): 3403-3406, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33687032

RESUMO

A combination of in situ XANES, temperature programmed oxidation, kinetic and density functional theory results demonstrate that the d-band centers (εd) of Au and Pt metals are upshifted when 39.9 V m-1 of electric field is applied. This leads to the enhancement of the adsorption strength of CO on both metals, and, thus, results in the promotion (+15%) and the depression (-23%) of CO conversions on Au and Pt, respectively, in the CO oxidation.

3.
Micromachines (Basel) ; 11(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224996

RESUMO

Planar and rigid conventional electronics are intrinsically incompatible with curvilinear and deformable devices. The recent development of organic and inorganic flexible and stretchable electronics enables the production of various applications, such as soft robots, flexible displays, wearable electronics, electronic skins, bendable phones, and implantable medical devices. To power these devices, persistent efforts have thus been expended to develop a flexible energy storage system that can be ideally deformed while maintaining its electrochemical performance. In this review, the enabling technologies of the electrochemical and mechanical performances of flexible devices are summarized. The investigations demonstrate the improvement of electrochemical performance via the adoption of new materials and alternative reactions. Moreover, the strategies used to develop novel materials and distinct design configurations are introduced in the following sections.

4.
ACS Appl Mater Interfaces ; 12(13): 15239-15245, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150374

RESUMO

Z-scheme transfer is an ideal photocatalytic system with stronger redox ability, but its design and construction still lack understanding. Herein, the work function difference and the band bending are found to be the determining factors for the construction of the Z-scheme transfer mechanism of photoexcited charges in TiO2/WO3. The control of work function and band bending achieved by carbon insertion results from the hybridization of orbitals and redistribution of electron density, as demonstrated by ultraviolet photoelectron spectroscopy and photocatalytic analysis. The heterojunction system, TiO2/WO3, with controlled work function and band bending, shows 2 times faster •OH radical formation rate (0.011 µmol min-1) compared to the undisturbed system. First-principles calculation reveals that the changes in work function and band bending result in an interfacial electric field, which shifts the charge transfer mechanism from type II to Z-scheme. This work proves that the design of work function and band bending allows reconstructing charge transfer mechanism by forming the interfacial electric field in heterojunction systems.

5.
Sci Rep ; 9(1): 4242, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862853

RESUMO

The perovskite solar cell (PSC) is a rapidly advancing solar technology with high efficiencies and low production costs. However, as the PSC contains methylammonium lead iodide (CH3NH3PbI3, MAPbI3) in the light-harvesting active layer, addressing the safety issue of PSCs is an important prerequisite for its commercialization. In this study, the potential hazards of the PSC were investigated with consideration of Pb species released from PSC using an ecotoxicity, cytotoxicity, chronic toxicity, and genotoxicity battery assay. PSC and its degradation products can cause significant toxicity, with PSC being more toxic than the individual degradation products. The order of ecotoxicity and cytotoxicity was found to be Pb2+ > PSC > PbI2 = PbO. Aquatic toxicity of PSC and its degradation products was suggested by Daphnia magna acute, chronic, and genotoxicity results. The current study highlights the non-negligible hazard potentialities of the PSC and its degradation products, as evidenced by our ecotoxicity and cytotoxicity battery assay. Our study indicates that great caution should be taken in the mass production of PSCs and could facilitate proper risk assessment. Based on our study, some considerations on the implementation of the "safe-by-design (SbD)" approach for the sustainable development of PSC technology can be formulated.

6.
Chem Commun (Camb) ; 54(52): 7147-7150, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29882952

RESUMO

Catalytic activity was efficiently tuned via manipulating the electronic state of a catalyst, induced by a facile doping method in a metal/graphene system. The strategy was proven to be applicable to not only transition metal but also noble metal catalysts in CO hydrogenation and 4-nitrophenol reduction.

7.
J Am Chem Soc ; 139(48): 17694-17699, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29125746

RESUMO

Direct methane conversion into value-added products has become increasingly important. Because of inertness of methane, cleaving the first C-H bond has been very difficult, requiring high reaction temperature on the heterogeneous catalysts. Once the first C-H bond becomes activated, the remaining C-H bonds are successively dissociated on the metal surface, hindering the direct methane conversion into chemicals. Here, a single-atom Rh catalyst dispersed on ZrO2 surface has been synthesized and used for selective activation of methane. The Rh single atomic nature was confirmed by extended X-ray fine structure analysis, electron microscopy images, and diffuse reflectance infrared Fourier transform spectroscopy. A model of the single-atom Rh/ZrO2 catalyst was constructed by density functional theory calculations, and it was shown that CH3 intermediates can be energetically stabilized on the single-atom catalyst. The direct conversion of methane was performed using H2O2 in the aqueous solution or using O2 in gas phase as oxidants. Whereas Rh nanoparticles produced CO2 only, the single-atom Rh catalyst produced methanol in aqueous phase or ethane in gas phase.

8.
Phys Chem Chem Phys ; 19(37): 25796, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28914296

RESUMO

Correction for 'Observation of crystalline changes of titanium dioxide during lithium insertion by visible spectrum analysis' by Inho Nam et al., Phys. Chem. Chem. Phys., 2017, 19, 13140-13146.

9.
ChemSusChem ; 10(18): 3671-3678, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834353

RESUMO

The conversion of CO2 into useful chemicals is an attractive method to reduce greenhouse gas emissions and to produce sustainable chemicals. However, the thermodynamic stability of CO2 means that a lot of energy is required for its conversion into chemicals. Here, we suggest a new catalytic system with an alternative heating system that allows minimal energy consumption during CO2 conversion. In this system, electrical energy is transferred as heat energy to the carbon-supported metal catalyst. Fast ramping rates allow high operating temperatures (Tapp =250 °C) to be reached within 5 min, which leads to an 80-fold decrease of energy consumption in methane reforming using CO2 (DRM). In addition, the consumed energy normalized by time during the DRM reaction in this current-assisted catalysis is sixfold lower (11.0 kJ min-1 ) than that in conventional heating systems (68.4 kJ min-1 ).


Assuntos
Dióxido de Carbono/química , Carbono/química , Metais/química , Catálise , Metano/química , Temperatura
10.
Phys Chem Chem Phys ; 19(20): 13140-13146, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28489084

RESUMO

Real-time analysis of changes in the atomic environment of materials is a cutting edge technology that is being used to explain reaction dynamics in many fields of science. Previously, this kind of analysis was only possible using heavy nucleonic equipment such as XANES and EXAFS, or Raman spectroscopy on a moderate scale. Here, a new methodology is described that can be used to track changes in crystalline developments during complex Li insertion reactions via the observation of structural color. To be specific, the changes in atomic crystalline and nanostructure are shown during Li insertion in a complex TiO2 polymorph. Structural color corresponds to the refractive indices of materials originating from their atomic bonding nature and precise wave interferences in accordance with their nanostructure. Therefore, this new analysis simultaneously reveals changes in the nanostructure as well as changes in the atomic bonding nature of materials.

11.
Chem Commun (Camb) ; 53(29): 4116-4119, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28349146

RESUMO

N2O activation of Cu-MOR enhanced methanol production at elevated temperatures, to a greater extent than activation by O2 under optimal conditions. The increase in methanol production by N2O activation was attributed to the facile formation of an active copper center with no formation of inactive intermediate species.

12.
J Nanosci Nanotechnol ; 17(1): 588-93, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29630297

RESUMO

A sponge-like Li(4)Ti(5)O(12)/graphene composite was prepared via sequential hydrothermal process and solid-state heat treatment process for the application to high-power lithium ion batteries. The as-prepared electrode showed outstanding Li electroactivities with a rapid and reversible Li insertion/ extraction of up to 10 C-rate (1.75 A/g). It delivered a discharge capacity of 174 mAh/g at 0.5 C, near the theoretical capacity of Li(4)Ti(5)O(12), with good rate capability and cyclic stability. First-principles calculations revealed the intimate interaction of the Li(4)Ti(5)O(12) and graphene, which implies that graphene functions as an 'electron tunnel.' Electrochemical impedance spectroscopy also proved that the graphene-hybridization and the unique structure of the Li(4)Ti(5)O(12) material significantly reduce the resistive behavior of electrodes. The 3D structured Li(4)Ti(5)O(12)/graphene hybrid reported herein could be a promising candidate for a safe, low-cost, high-power anode for lithium ion batteries, and our seeding-growth-sintering method for decorating graphene with active material will offer an effective upgrade on highly insulating Li(4)Ti(5)O(12) materials.

13.
ChemSusChem ; 10(2): 442-454, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27863078

RESUMO

The reaction mechanism of glycerol hydrogenolysis to 1,2-propanediol over a spinel CuCr2 O4 catalyst was investigated by using DFT calculations. Theoretical models were developed from the results of experimental characterization. Adsorption configurations and energetics of the reactant, intermediates, final product, and transition states were calculated on Cu(1 1 1) and CuCr2 O4 (1 0 0). Based on our DFT results, we found that the formation of acetol is preferred to that of 3-hydroxypropionaldehyde thermodynamically and kinetically on both surfaces. For glycerol hydrogenolysis to 1,2-propanediol, the CuCr2 O4 surface is less exothermic but more kinetically favorable than the Cu surface. The low activation barrier during the reaction on the CuCr2 O4 surface is attributed to the unique surface structure; the cubic spinel structure provides a stable adsorption site on which reactants are allowed to be dehydrated and hydrogenated easily with the characteristic adsorption configuration. The role of the Cu and Cr atoms in a CuCr2 O4 surface were revealed. The results of reaction tests supported our theoretical calculations.


Assuntos
Compostos de Cromo/química , Cobre/química , Glicerol/química , Hidrogênio/química , Acetona/análogos & derivados , Acetona/química , Adsorção , Catálise , Modelos Moleculares , Conformação Molecular , Propilenoglicol/química , Teoria Quântica , Propriedades de Superfície
14.
Sci Rep ; 6: 38847, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934945

RESUMO

In situ monitoring of electrode materials reveals detailed physicochemical transition in electrochemical device. The key challenge is to explore the localized features of electrode surfaces, since the performance of an electrochemical device is determined by the summation of local architecture of the electrode material. Adaptive in situ techniques have been developed for numerous investigations; however, they require restricted measurement environments and provide limited information, which has impeded their widespread application. In this study, we realised an optics-based electrochemical in situ monitoring system by combining a dark-field micro/spectroscopy with an electrochemical workstation to investigate the physicochemical behaviours of Pt catalyst. We found that the localized plasmonic trait of a Pt-decorated Au nanoparticle as a model system varied in terms of its intensity and wavelength during the iterations of a cyclic voltammetry test. Furthermore, we show that morphological and compositional changes of the Pt catalyst can be traced in real time using changes in quantified plasmonic characteristics, which is a distinct advantage over the conventional electrochemistry-based in situ monitoring systems. These results indicate the substantial promise of online operando observation in a wide range of electrical energy conversion systems and electrochemical sensing areas.

15.
ACS Appl Mater Interfaces ; 8(24): 15802-8, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27245939

RESUMO

Structural colors of the ordered photonic nanostructures are widely used as an effective platform for manipulating the propagation of light. Although several approaches have been explored in attempts to mimic the structural colors, improving the reproducibility, mechanical stability, and the economic feasibility of sophisticated photonic crystals prepared by complicated processes continues to pose a challenge. In this study, we report on an alternative, simple method for fabricating a tunable photonic crystal at room temperature. A bowl-like nanostructure of TiO2 was periodically arranged on a thin Ti sheet through a two-step anodization process where its diameters were systemically controlled by changing the applied voltage. Consequently, they displayed a broad color distribution, ranging from red to indigo, and the principal reason for color generation followed the Bragg diffraction theory. This noncolorant method was capable of reproducing a Mondrian painting on a centimeter scale without the need to employ complex architectures, where the generated structural colors were highly stable under mechanical or chemical influence. Such a color printing technique represents a potentially promising platform for practical applications for anticounterfeit trademarks, wearable sensors, and displays.

16.
ACS Appl Mater Interfaces ; 8(19): 12186-93, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27135549

RESUMO

Dodecatitanate H2Ti12O25 crystal has a condensed layered structure and exhibits noteworthy Li storage performance that makes it an anode material with great potential for use in Li-ion batteries. However, an unknown Li diffusion mechanism and a sluggish level of Li dynamics through elongated diffusion paths inside this crystal has impeded any forward development in resolving its limited rate capability and cyclic stability. In this study, we investigated the Li diffusion dynamics inside the H2Ti12O25 crystal that play an essential role in Li storage performance. A study of density functional theory combined with experimental evaluation confirmed a strong dependence of Li storage performance on its diffusion. In addition, a nanostructured H2Ti12O25 containing a bundle of nanorods is developed via the introduction of a kinetic gap during the structural transformation, which conferred a significantly shortened diffusion time/length for Li in H2Ti12O25. The nanostructured H2Ti12O25 has high specific capacity (∼230 mAh g(-1)) and exhibits enhanced cyclic stability and rate capability compared with conventional bulky H2Ti12O25. The H2Ti12O25 proposed in this study has high potential for use as an anode material with excellent safety and stability.

17.
Chem Commun (Camb) ; 51(84): 15370-3, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26327303

RESUMO

Herein, we report a novel method for H2O2 detection based on a single plasmonic nanoprobe via cytochrome c (Cyt c)-mediated plasmon resonance energy transfer (PRET). Dynamic spectral changes were observed in the fingerprint quenching dip of a single plasmonic nanoprobe in response to changes in the redox state of Cyt c, induced by H2O2. Based on the changes in the spectral profile of the single plasmonic nanoprobe, H2O2 was successfully detected in a wide concentration range from 100 mM to 10 nM, including physiologically relevant micromolar and nanomolar concentrations.


Assuntos
Citocromos c/química , Transferência Ressonante de Energia de Fluorescência , Ouro/química , Peróxido de Hidrogênio/análise , Nanopartículas Metálicas/química , Citocromos c/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução
18.
Chem Commun (Camb) ; 51(81): 15019-22, 2015 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-26311036

RESUMO

A c-channel formed inside stacked (001) planes in rutile TiO2 exhibits the lowest energy barrier for Li migration. Based on this rationale, we proposed a three-dimensional TiO2 sphere comprised of radially assembled c-channel specialized nanorods in order to maximize Li storage.

19.
ACS Appl Mater Interfaces ; 7(30): 16565-72, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26168058

RESUMO

Despite the many efforts to solve the problem associated with lithium storage at high rates, it is rarely achieved up until now. The design with experimental proof is reported here for the high rate of lithium storage via a core-shell structure composite comprised of a Li4Ti5O12 (LTO) core and a nanographene (NG) shell. The LTO-NG core-shell was synthesized via a first-principles understanding of the adsorption properties between LTO and NG. Interfacial reactions are considered between the two materials by a redox coupling effect. The large interfacial area between the LTO core and the NG shell resulted in a high electron-conducting path. It allowed rapid kinetics to be achieved for lithium storage and also resulted in a stable contact between LTO and NG, affording cyclic performance stability.

20.
ACS Appl Mater Interfaces ; 7(20): 10666-70, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25966300

RESUMO

Here we propose facile and scalable synthesis of two-dimensional (2D) dendritic platinum nanoparticle at room temperature by exploiting an oil-in-water emulsion. The interfacial synthesis selectively provides platinum nanoparticle with 2D structure in high yield by controlling key reactants such as the amount of oleic acid and the concentration of block copolymer. Electrocatalytic activity of 2D dendritic platinum nanoparticle for oxygen reduction and methanol oxidation reaction is also examined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...