Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404870, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225406

RESUMO

Quasi-3D plasmonic nanostructures are in high demand for their ability to manipulate and enhance light-matter interactions at subwavelength scales, making them promising building blocks for diverse nanophotonic devices. Despite their potential, the integration of these nanostructures with optical sensors and imaging systems on a large scale poses challenges. Here, a robust technique for the rapid, scalable, and seamless replication of quasi-3D plasmonic nanostructures is presented straight from their production wafers using a microbubble process. This approach not only simplifies the integration of quasi-3D plasmonic nanostructures into a wide range of standard and custom optical imaging devices and sensors but also significantly enhances their imaging and sensing performance beyond the limits of conventional methods. This study encompasses experimental, computational, and theoretical investigations, and it fully elucidates the operational mechanism. Additionally, it explores a versatile set of options for outfitting nanophotonic devices with custom-designed plasmonic nanostructures, thereby fulfilling specific operational criteria.

2.
Nat Commun ; 15(1): 4443, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789512

RESUMO

Transparent radiative cooling holds the promise to efficiently manage thermal conditions in various electronic devices without additional energy consumption. Radiative cooling cover windows designed for foldable and flexible displays could enhance cooling capacities in the ubiquitous deployment of flexible electronics in outdoor environments. However, previous demonstrations have not met the optical, mechanical, and moisture-impermeable criteria for such cover windows. Herein, we report transparent radiative cooling metamaterials with a thickness of 50 microns as a cover window of foldable and flexible displays by rational design and synthesis of embedding optically-modulating microstructures in clear polyimide. The resulting outcome not only includes excellent light emission in the atmospheric window under the secured optical transparency but also provides enhanced mechanical and moisture-impermeable properties to surpass the demands of target applications. Our metamaterials not only substantially mitigate the temperature rise in heat-generating devices exposed to solar irradiance but also enhance the thermal management of devices in dark conditions. The light output performance of light-emitting diodes in displays on which the metamaterials are deployed is greatly enhanced by suppressing the performance deterioration associated with thermalization.

3.
PNAS Nexus ; 3(5): pgae156, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715730

RESUMO

The increasing need for precise dietary monitoring across various health scenarios has led to innovations in wearable sensing technologies. However, continuously tracking food and fluid intake during daily activities can be complex. In this study, we present a machine-learning-powered smart neckband that features wireless connectivity and a comfortable, foldable design. Initially considered beneficial for managing conditions such as diabetes and obesity by facilitating dietary control, the device's utility extends beyond these applications. It has proved to be valuable for sports enthusiasts, individuals focused on diet control, and general health monitoring. Its wireless connectivity, ergonomic design, and advanced classification capabilities offer a promising solution for overcoming the limitations of traditional dietary tracking methods, highlighting its potential in personalized healthcare and wellness strategies.

4.
ACS Nano ; 17(24): 25014-25026, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38059775

RESUMO

Vertically ordered Si needles are of particular interest for long-term intracellular recording owing to their capacity to infiltrate living cells with negligible damage and minimal toxicity. Such intracellular recordings could greatly benefit from simultaneous live cell imaging without disrupting their culture, contributing to an in-depth understanding of cellular function and activity. However, the use of standard live imaging techniques, such as inverted and confocal microscopy, is currently impeded by the opacity of Si wafers, typically employed for fabricating vertical Si needles. Here, we introduce a transparent intracellular sensing platform that combines vertical Si needles with a percolated network of Au-Ag nanowires on a transparent elastomeric substrate. This sensing platform meets all prerequisites for simultaneous intracellular recording and imaging, including electrochemical impedance, optical transparency, mechanical compliance, and cell viability. Proof-of-concept demonstrations of this sensing platform include monitoring electrical potentials in cardiomyocyte cells and in three-dimensionally engineered cardiovascular tissue, all while conducting live imaging with inverted and confocal microscopes. This sensing platform holds wide-ranging potential applications for intracellular research across various disciplines such as neuroscience, cardiology, muscle physiology, and drug screening.


Assuntos
Microscopia , Nanofios , Sobrevivência Celular , Miócitos Cardíacos , Agulhas
5.
ACS Nano ; 17(22): 22733-22743, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37933955

RESUMO

E-textiles, also known as electronic textiles, seamlessly merge wearable technology with fabrics, offering comfort and unobtrusiveness and establishing a crucial role in health monitoring systems. In this field, the integration of custom sensor designs with conductive polymers into various fabric types, especially in large areas, has presented significant challenges. Here, we present an innovative additive patterning method that utilizes a dual-regime spray system, eliminating the need for masks and allowing for the programmable inscription of sensor arrays onto consumer textiles. Unlike traditional spray techniques, this approach enables in situ, on-the-fly polymerization of conductive polymers, enabling intricate designs with submillimeter resolution across fabric areas spanning several meters. Moreover, it addresses the nozzle clogging issues commonly encountered in such applications. The resulting e-textiles preserve essential fabric characteristics such as breathability, wearability, and washability while delivering exceptional sensing performance. A comprehensive investigation, combining experimental, computational, and theoretical approaches, was conducted to examine the critical factors influencing the operation of the dual-regime spraying system and its role in e-textile fabrication. These findings provide a flexible solution for producing e-textiles on consumer fabric items and hold significant implications for a diverse range of wearable sensing applications.

6.
Sci Adv ; 8(13): eabn1772, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35353558

RESUMO

Ocular drug delivery remains a grand challenge due to the complex structure of the eye. Here, we introduce a unique platform of ocular drug delivery through the integration of silicon nanoneedles with a tear-soluble contact lens. The silicon nanoneedles can penetrate into the cornea in a minimally invasive manner and then undergo gradual degradation over the course of months, enabling painless and long-term sustained delivery of ocular drugs. The tear-soluble contact lens can fit a variety of corneal sizes and then quickly dissolve in tear fluid within a minute, enabling an initial burst release of anti-inflammatory drugs. We demonstrated the utility of this platform in effectively treating a chronic ocular disease, such as corneal neovascularization, in a rabbit model without showing a notable side effect over current standard therapies. This platform could also be useful in treating other chronic ocular diseases.


Assuntos
Lentes de Contato , Silício , Animais , Córnea , Sistemas de Liberação de Medicamentos , Coelhos , Silício/análise , Lágrimas/química
7.
ACS Appl Mater Interfaces ; 13(20): 24024-24031, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33990134

RESUMO

Quasi-three-dimensionally designed metal-dielectric hybrid nanoantennas have provided a unique capability to control light at the nanoscale beyond the diffraction limit, which has enabled powerful optical manipulation techniques. However, the fabrication of these nanoantennas has largely relied on the use of nanolithography techniques that are time- and cost-consuming, impeding their application in wide-ranging use. Herein, we report a versatile methodology enabling the repetitive replication of these nanoantennas from their silicon molds with tailored optical features for infrared bandpass filtering. Comprehensive experimental and computational analyses revealed the underlying mechanism of this methodology and also provided a technical guideline for pragmatic translation into infrared filters in multispectral imaging.

8.
ACS Appl Mater Interfaces ; 12(27): 30112-30119, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32517464

RESUMO

Eggshell membrane has selective permeability that enables gas or liquid molecules to pass through while effectively preventing migration of microbial species. Herein, inspired by the architecture of the eggshell membrane, we employ three-dimensional (3D) printing techniques to realize bioresponsive devices with excellent selective permeability for effective biochemical conversion. The fabricated devices show 3D conductive carbon nanofiber membranes in which precultured microbial cells are controllably deployed. The resulting outcome provides excellent selective permeability between chemical and biological species, which enables acquisition of target responses generated by biological species confined within the device upon input signals. In addition, electrically conductive carbon nanofiber networks provide a platform for real-time monitoring of metabolism of microbial cells in the device. The suggested platform represents an effort to broaden microbial applications by constructing biologically programmed devices for desired responses enabled by designated deployment of engineered cells in a securely confined manner within enclosed membranes using 3D printing methods.


Assuntos
Nanofibras/química , Nanopartículas/química , Impressão Tridimensional
9.
ACS Appl Mater Interfaces ; 12(23): 26464-26475, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32395977

RESUMO

3D printable synthetic materials have been developed to realize desired surface and mechanical properties. Lubricating synthetic surfaces have broad technological impacts on many applications including food packaging, microfluidic systems, and biomedical devices. However, combining soft materials with lubricants leads to significant phase separation and swelling phenomena, together with lowered mechanical strength, impeding full utilization of lubricating synthetic surfaces with desired shapes in a highly controllable manner. Here, we report a new platform to create a 3D printable lubricant-polymer composite (3D-LUBRIC) for the seamless fabrication of multidimensional structures with diverse functionalities. The rationally designed lubricant-polymer mixtures including silica aerogel particles not only exhibit suitable rheological properties for direct ink writing without phase separation but also enable the deterministic additive assembly of heterogeneous materials, which have large mismatches of oil permeability, with no distinct shape distortion. While exhibiting excellent lubricating properties for a variety of liquids, 3D-LUBRIC shows tunable mechanical properties with desired functionalities, such as optical transparency, flexibility and stretchability, and anti-icing and antibacterial/bactericidal properties. We employ the proposed platform to fabricate self-cleanable containers and antibacterial/bactericidal medical tubes. Our platform can offer new opportunities for building low-adhesive, multifunctional synthetic materials with customized shapes for diverse applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA