Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 932: 173047, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723957

RESUMO

This research was designed to estimate the contributions of phosphorus (P) in different factions from an upstream plain river network to algal growth in a downstream shallow eutrophic lake, Taihu Lake, in China. During three flow regimes, the P fractions in multiple phases (particulate, colloidal and dissolved phases) and their algal availabilities were assessed via bioassays with Dolichospermum flos-aquae as the test organism. The P partitioning patterns among multiple phases were strongly affected by the concentration of total suspended solids (TSS) that changed with the river flow regime, with stronger disturbance of sediments at lower water levels (low flow) and weaker disturbance of sediments at higher water levels (high flow) in the plain river network. The median TSS concentration across the river network decreased from 157.4 mg/L during low flow to 31.8 mg/L during high flow, and the median particulate P concentration decreased from 0.132 mg/L to 0.093 mg/L. The particulate P contributed equally to the amount of algal available P (AAP) as did the water-mobilizable P (colloidal plus dissolved phase) in the rivers flowing into Taihu Lake. The annual average concentrations of particulate algal available P (P-AAP), colloidal algal available P (C-AAP) and dissolved algal available P (D-AAP) were estimated to be 0.032 mg/L, 0.012 mg/L and 0.019 mg/L, respectively, during 2012-2018, accounting for 50.8 %, 19.0 % and 30.2 %, respectively, of the total AAP. At the watershed scale, controlling P drainage from downstream urbanized areas should be emphasized. Additionally, controlling sediment resuspension or reducing the TSS concentration in the inflowing rivers is important for decreasing the particulate P flux to downstream lakes.


Assuntos
Monitoramento Ambiental , Eutrofização , Lagos , Fósforo , Rios , Poluentes Químicos da Água , Fósforo/análise , Lagos/química , Rios/química , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química
2.
Sci Total Environ ; 912: 168780, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38007111

RESUMO

Resuspended particulate matter in shallow lakes contributes remarkable phosphorus (P) concentrations to the water column that potentially support algal/cyanobacterial growth. However, only fine particulate matter can be retained in the water column for a long time after sediment resuspension events. The size at which fine particulate matter has ecological implications remains undefined. This research defined suspended particulate matter with a median grain size <2.5 µm (SPM2.5) in shallow lakes, which resists sedimentation and enriches bioavailable P. The relationship between the size of suspended particulate matter (SPM) and water disturbance was characterized by conducting a lab-scale jar test with sediments in a shallow lake. The sedimentation of completely resuspended particulate matter occurred under a series of turbulence shear rates (G) ranging from 0 to 50 s-1. When G was larger than 20 s-1, the SPM had a median grain size (D50) ranging from 9 µm to 11 µm for the three samples. When G was <10 s-1, only SPM <2.5 µm remained in suspension. The SPM larger than 2.5 µm settled when G was between 10 s-1 and 20 s-1, and the SPM remained in complete suspension when G was larger than 20 s-1. Furthermore, P fractionation was conducted on different size-grouped particles that were sorted using gravity sedimentation. The concentration of iron/aluminium bound-P (Fe/Al-P) decreased exponentially as the particle size increased. The concentration of Fe/Al-P in SPM2.5 ranged from 902.8 mg/kg to 1212.1 mg/kg, accounting for over 80 % of extractable total phosphorus. SPM2.5 contributed a remarkable amount of bioavailable P to the algal/cyanobacterial biomass in the shallow lake with frequent sediment resuspension.

3.
Sci Total Environ ; 868: 161694, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36690114

RESUMO

Sediment phosphorus (P) release in shallow eutrophic lakes is a major contributor of P to algal blooms. This research proposes an innovative notion in which the P diffusive fluxes at the sediment-water interface (SWI) of shallow lakes are controlled by the P adsorption-desorption equilibria, with pH as the major regulating factor. The P equilibrium concentration (Ce) at SWI was conceptualized into a dependent variable responding to two factor-dependent variables, the algae/cyanobacteria-available P pools of the SWI and the pH in the water column, resulting in the empirical equation Ce(pH) = Cm/[1 + e-k(pH-pH1/2)]. Cm is the maximum P equilibrium concentration when all algae/cyanobacteria-available P in sediments is released, and the value relies on the thickness of the oxygen and pH transition layer that contains iron/aluminium (hydr)oxide-adsorbed P. The parameters in the empirical equation are accessible from P desorption tests conducted on a set of sediment samples with different P pollution levels. This research provides a quantitative approach for determining the sediment P criteria of shallow lakes, with sediment iron/aluminium (hydr)oxide-adsorbed P and water depth as two main indicators with ecological implications. A decrease in water depth would proportionally increase the P concentration at a similar sediment P releasing flux and increase algae/cyanobacteria-available P pools that are ready to equilibrate with the water column by increasing hydrodynamic disturbance of the SWI.

4.
J Environ Sci (China) ; 125: 798-810, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375961

RESUMO

Although point and nonpoint sources contribute roughly equal nutrient loads to lakes, their relative role in supporting algae growth has not been clarified. In this research, we have established a quantitative relationship between algae-available phosphorus (P) and P chemical fractions in sediments; the latter indicates the relative contribution of point versus nonpoint sources. Surface sediments from three large shallow lakes in eastern China, namely, the Chaohu, Taihu and Hongzehu Lakes, were sampled to assess their algae-available P and chemically extracted P fractions. The algae-available P primarily comes from iron/aluminium (hydr)oxide-bound P (Fe/Al-bound P), 45% of which is algae-available P. The ratio of Fe/Al-bound P to calcium compound-bound P (Ca-bound P) indicated the relative contribution of point to nonpoint sources, with the point sources contributing the majority of increased Fe/Al-bound P in sediments. Therefore, the reduction of point sources from urbanized areas, rather than nonpoint sources from agricultural areas that primarily contribute to the Ca-bound P fraction, should be prioritized to alleviate cyanobacterial algal blooms (CyanoHABs) in shallow lakes with sediment P as a potential source to support algae growth. With these important results, we proposed a conceptual model for "P-pumping suction" from sediments to algae to aid in the development of the criteria for sediment P concentrations in shallow lakes.


Assuntos
Lagos , Poluentes Químicos da Água , Fósforo/análise , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Eutrofização , China , Monitoramento Ambiental
5.
Sci Total Environ ; 834: 155293, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447183

RESUMO

River networks play important roles in dissemination of antibiotic resistance genes (ARGs). The occurrence, diversity, and abundance of ARGs in river networks have been widely investigated. However, the assembly processes that shaped ARGs profiles across space and time are largely unknown. Here, the dynamics of ARGs profiles in river networks (Taihu Basin) were revealed by high-throughput quantitative PCR followed by multiple statistical analyses to assess the underlying ecological processes. The results revealed clear variations for ARGs profiles across wet, normal, and dry seasons. Meanwhile, a significant negative correlation (p < 0.01) was observed between the similarity of ARGs profiles and geographic distance, indicating ARGs profiles exhibited distance-decay patterns. Null model analysis showed that ARGs profiles were mainly assembled via deterministic processes. Redundancy analysis followed by hierarchical partitioning revealed that environmental attributes (mainly pH and temperature) were the major factors affecting the dynamics of ARGs profiles. Together, these results indicated that environmental filtering was the dominant ecological process that shaped ARGs profiles. This study enhances our understanding how the antibiotic resistome is assembled in river networks and will be beneficial for the development of management strategies to control ARGs dissemination.


Assuntos
Antibacterianos , Rios , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Estações do Ano
6.
Sci Total Environ ; 814: 152753, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34979228

RESUMO

This study revealed a general pattern of P partitioning onto sediment particles that has ecological implications for shallow lakes. Six individual sediment samples from two large shallow lakes in eastern China were sieved into five sediment particle size classes ranging from 0.5 µm to 50 µm. These particle size groupings were subjected to P fractionation and P adsorption isotherm analyses as well as bioavailable P bioassays. A P-adding experiment was used to validate the initial P partitioning onto the sediment particles. Multiple lines of evidence revealed that P partitioning onto the particles was dependent on the amounts of P adsorbents or P-containing compounds in the sediments, such as iron and aluminum oxides, organic matter, and calcium compounds. An exponential equation, c(x) = cmaxexp(-kdx), was proposed to describe the relationship between the partitioning of bioavailable P and particle size. In the equation, cmax represents the maximum P concentration adsorbed by the finest particles, and kd is a constant reflecting the decrease in the P concentration with particle size (x).


Assuntos
Lagos , Poluentes Químicos da Água , China , Eutrofização , Sedimentos Geológicos , Tamanho da Partícula , Fósforo/análise , Poluentes Químicos da Água/análise
7.
Water Res ; 211: 118057, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066261

RESUMO

Bacterioplankton play an important role in the biogeochemical cycling in rivers. The dynamics of hydrologic conditions in rivers were believed to affect geographic pattern and assembly process of these microorganisms, which have not been widely investigated. In this study, the geographic pattern and assembly process of bacterioplankton community in river networks of the Taihu Basin were systematically explored using amplicon sequencing of the 16S rRNA gene. The results showed that the diversity, structure,  and taxonomic composition of bacterioplankton community all exhibited significant temporal variation during wet, normal, and dry seasons (p<0.01). The neutral community model and null model were applied to reveal the assembly process of bacterioplankton community. The stochastic process and deterministic process both shaped the bacterioplankton community with greater influence of deterministic process. In addition, the abundant and rare bacterioplankton communities were comparatively analyzed. The abundant and rare bacterioplankton communities exhibited similar temporal dynamics (principal coordinates analysis) and spatial variations (distance-decay relationship), indicating similar geographic patterns. Meanwhile, distinct assembly processes were observed for the abundant and rare bacterioplankton communities. Stochastic process (dispersal limitation) shaped the abundant bacterioplankton community while deterministic process (heterogeneous selection) dominated the assembly process of rare bacterioplankton community. Mantel test, redundancy analysis, and correlation analysis together indicated that pH and dissolved oxygen were the major environmental attributes that affected thestructure and assembly process of bacterioplankton community. These results expanded our understanding of the geographic pattern, assembly process, and driving factors of bacterioplankton community in river networks and provided clues for the underlying mechanisms.


Assuntos
Ecossistema , Rios , Organismos Aquáticos , China , RNA Ribossômico 16S/genética , Estações do Ano
8.
Environ Pollut ; 294: 118668, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896398

RESUMO

This study showed that metal transport and partitioning are primarily controlled by suspended solids with seasonal flow regimes in plain river networks with sedimentary resuspension. Eight metal species containing iron (Fe), manganese (Mn), cadmium (Cd), chrome (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn), in multiple phases of sediments, suspended solids (>0.7 µm), colloids (1 nm-0.7 µm) and dissolved phase (<1 nm) were analysed to characterize their temporal-spatial patterns, partitioning and transport on a watershed scale. Metal concentrations were associated with suspended solids in the water column and decreased from low flow to high flow. However, metal partitioning between particulate phase (suspended solids) and dissolvable phases (colloids and dissolved phase) was reversed and increased from low flow to high flow with decreased concentration of total suspended solids and median particle size. Partition coefficients (kp) showed differences among metal species, with higher values for Pb (354.3-649.0 L/g) and Cr (54.2-223.7 L/g) and lower values for Zn (2.5-25.2 L/g) and Cd (17.3-21.0 L/g). Metal concentrations in sediments increased by factors of 1.2-3.0 from upstream to downstream in watersheds impacted by urbanization. The behaviours of metals in rivers provide deeper insight into the ecological risks they pose for downstream lakes, where increased redox potential and organic matter may increase metal mobility due to algal blooms. Areas with heavy pollution of metals and the transport routines of metals in the river networks were also revealed in our research.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Metais Pesados/análise , Rios , Poluentes Químicos da Água/análise
9.
Artigo em Inglês | MEDLINE | ID: mdl-34886083

RESUMO

Transparent exopolymer particles (TEP) have been described as a class of particulate acidic polysaccharides, which are commonly found in various surface waters. Due to their unique physicochemical characteristics, they have recently been receiving increasing attention on their effects in water treatment. Currently, TEP are commonly known as clear, gel-like polysaccharides. This review first introduced the definition of TEP in water treatment and the relationship between TEP and algal organic matter (AOM). Further, in the review, the authors attempt to offer a holistic view and critical analysis concerning the research on TEPs in source water reservoirs, water plants and membrane treatment processes. It was clearly demonstrated in this review that the formation of TEP in source water reservoirs is largely related to water quality and phytoplankton, and the seasonal water stratification may indirectly affect the formation of TEP. In the waterworks, the relationship between TEP and water treatment process is mutual and there is limited research on this relationship. Finally, the mechanism of TEP-induced membrane fouling and the effect of alleviating TEP-induced membrane fouling is discussed in this review. The TEP removed by ultrafiltration can be recombined after membrane, and the recombination mechanism may be an important way to reduce reverse osmosis membrane contamination.


Assuntos
Água Potável , Purificação da Água , Matriz Extracelular de Substâncias Poliméricas , Filtração , Membranas Artificiais , Ultrafiltração
10.
Water Res ; 209: 117887, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34839067

RESUMO

Driven by winds, the distribution of algae is often noticeably patchy at kilometer scales in shallow lakes. The decomposition of the settled algal biomass may affect nitrogen (N) biogeochemical cycles and thereby N loss in sediments. In this study, we investigated sediment denitrification N-loss patterns along algal migration pathway in Taihu Lake, a shallow and eutrophic lake in China, and found that wind-induced algal migration in the overlying water manipulated the temporal and spatial patterns of denitrification N-loss in sediments. A N loss hotspot in sediments was created in the algae concentrated zone, where N loss was, however, temporarily inhibited during algal bloom seasons and generally exhibited a negative relationship with algal biomass. In the zone where algae have left, sediment N loss rate was relatively low and positively correlated with algal biomass. The decay of algal biomass generated organic carbon and created anoxia, favoring denitrification, while excessive algal biomass could deplete oxygen and inhibit nitrification, causing nitrate limitation for denitrification. Piecewise linear regression analysis indicated that algal biomass of Chl-a > 73.0 µg/L in the overlying water could inhibit denitrification N-loss in sediments. This study adds to our understanding of N biogeochemical cycles in shallow eutrophic lakes.

11.
Environ Sci Pollut Res Int ; 28(24): 31151-31162, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33598841

RESUMO

The estuarine delta of the Yellow River is a region of strong land-ocean-human interactions that undergoes a unique evolutionary process. The delta is formed by deposition of large quantities of sediments carried by the Yellow River, especially during the annual water and sediment regulation period; more than one-third of the total annual sediments is deposited to the estuary area. The seagrass Zostera japonica is located at the forefront of the Yellow River delta. To study the impact of the different sediment environments on the Z. japonica growth, its growth and water quality and sediment parameters were measured on the northern and southern sides of the estuary from April to October in 2019. The action of wind and tides have re-suspended and dispersed sediments over time, producing shores on the southern delta characterized by nutrient-enriched clays and shores on the northern delta characterized by coarser sands and silts with poor nutrients. During the monitoring period, the concentrations of TC, TN, and TP in the root-zone sediments at the southern site were 1.56%, 0.04%, and 0.06%, respectively, whereas they were 0.69%, 0.007%, and 0.06%, respectively, at the northern site. Sufficient nutrients supported the growth of Z. japonica at the southern site, while poor nutrition limited the continuous growth of Z. japonica at the northern site. In July, the plant height, biomass, and shoot density of Z. japonica at the southern site reached the maximum values of 23.6 cm, 0.14 g/shoot, and 3245 shoots/m2, respectively, whereas they were 16.4 cm, 0.06 g/shoot, and 2740 shoots/m2, respectively, at the northern site. The sediment grain size and their nutrients contributed to different growth patterns of Z. japonica at the southern and northern sites. Our research could provide important implication for the conservation of Z. japonica habitats in the Yellow River estuary in China.


Assuntos
Poluentes Químicos da Água , Zosteraceae , China , Ecossistema , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Humanos , Rios , Poluentes Químicos da Água/análise
12.
Ecotoxicol Environ Saf ; 201: 110830, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32559689

RESUMO

Iron (Fe) oxides are intimately coupled with phosphorus and closely associated with the bioavailability of potential toxic elements (PTEs) in soil. Thus, Fe oxides may influence the stabilization of PTEs in contaminated soils amended by phosphorus. To evaluate the effects of hematite (HMT) on the stabilization of PTEs, 1-5% (by weight) of HMT was added into a contaminated red soil amended with hydroxyapatite (HAP) to simulate naturally occurring Fe oxides. The stabilization efficiencies of soil copper (Cu) and cadmium (Cd) amended with HAP in soils with low, moderate, and high content of HMT were assessed after a 60-day incubation. HAP treated the soil with high rate HMT decreased the CaCl2-extractable and acid-soluble fractions of Cu and Cd than that of HAP alone. In particular, CaCl2-extactable Cu and Cd in the soil with 5% HMT amended by HAP were 91-95% and 41-68% lower than those amended with only HAP. High content of HMT in soil could decrease the concentration of labile phosphorus in the presence of HAP, but it did not increase the concentration of NaOH-extractable inorganic phosphorus (the fraction bound to Fe oxides). The concentrations of free and crystalline Fe oxides were significantly increased by adding high dosages of HMT with or without HAP. High content of HMT in soil amended by HAP reduced metal phytotoxicity and uptake by wheat shoots than the soil containing HAP without HMT. The results indicate that HMT can promote Cu and Cd stabilization while decrease labile phosphorus in red soil amended with HAP, suggesting that phosphorus-based amendments combined with Fe oxides can be used to stabilize PTEs in contaminated red soils.


Assuntos
Cádmio/análise , Cobre/análise , Durapatita/química , Compostos Férricos/química , Fósforo/análise , Poluentes do Solo/análise , Disponibilidade Biológica , Cádmio/metabolismo , China , Cobre/metabolismo , Fósforo/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo
13.
Environ Sci Pollut Res Int ; 27(12): 13930-13938, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32036524

RESUMO

In this study, we want to clarify the driving factors of phytoplankton community in a set of eutrophic lakes in the lowland areas of Huaihe River, one of seven biggest rivers in China. We analyzed the phytoplankton community of five lakes located in the lowland areas of Huaihe River using Reynolds functional groups (RFG) approach, with simultaneous measurement of several environmental variables in monthly sampling campaigns during 2 years. The annual average phytoplankton biovolume of the five lakes ranged from 3.7 to 9.9 mm3/L, with the highest values occurring during warm seasons. The shallow eutrophic lakes primarily contained mixing and low-light adaptive species with C and D groups as dominant all-round the year. Representatives of X2, Y, and W1 were predominant during the spring and the autumn with high nutrients and organic matter concentrations. Cyanobacteria were mainly represented by group S1 especially during the summer. Mixing, temperature, together weak light caused by phytoplankton biomass, could shape phytoplankton assemblage more than nutrients in the shallow eutrophic lakes with warm-temperate climate.


Assuntos
Lagos , Fitoplâncton , China , Monitoramento Ambiental , Eutrofização , Rios , Estações do Ano
14.
Water Res ; 173: 115582, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32044592

RESUMO

Nitrous oxide is a powerful greenhouse gas, and its emissions from single reservoirs have been extensively studied; however, it still remains unclear about nitrous oxide emission patterns in cascade reservoirs. In this study, nitrous oxide emissions from cascade hydropower reservoirs were investigated using the thin boundary layer model in the heavily dammed upper Mekong River. Meanwhile, sediment denitrification for nitrous oxide production was analysed using the stable isotope method and the quantitative polymerase chain reaction method. Our results demonstrated that nitrous oxide emissions (0.47-1.08 µg m-2h-1) in the upper Mekong River were much lower than the global mean level (19.60 µg m-2h-1), but were increased by dam constructions; nitrous oxide emissions exhibited an increase trend along the flow direction in the cascade reservoirs. Sediment accumulation by dams supplied sufficient nitrogen substrates and organic carbon, creating hotspots of denitrification at the transition zone in reservoirs. As the elevation decreased, the increase in temperature enhanced microbial denitrification at the active zone, and thereby increased nitrous oxide production with the prolonged residence time. This study advanced our knowledge on nitrous oxide emissions from cascade hydropower systems.


Assuntos
Gases de Efeito Estufa , Rios , Desnitrificação , Nitrogênio , Óxido Nitroso
15.
Chemosphere ; 242: 125252, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31896206

RESUMO

Phytostabilization aided by soil amendments has been advocated in areas contaminated by trace metals. In this study, the effects of indigenous weed (Setaria pumila), energy plant (Pennisetum sinese), cadmium (Cd)-hyperaccumulator (Sedum plumbizincicola), and copper (Cu)-tolerant plant (Elsholtzia splendens) on the bioavailability and mobility of Cu and Cd in polluted soil were evaluated after phytostabilization aided by limestone (0.1% wt) over four years. The four plants combined with limestone significantly increased soil pH and decreased Cu and Cd fractions extracted by NH4OAc and diffusive gradients in thin films (DGT) than the untreated soils, respectively. P. sinese treatments decreased DGT-extractable Cu and Cd by 52.1% and 40.5% than S. pumila treatments, respectively. S. plumbizincicola and E. splendens treatments increased acid-soluble fraction of Cu and decreased residual fraction of Cu compared with S. pumila treatments. P. sinese treatments had the lowest phytotoxicity (inhibitoryrates, superoxide dismutase, peroxidase and catalase activities) among all treatments. Moreover, EDTA kinetic extraction showed that S. plumbizincicola and E. splendens treatments increased the mobility of Cu and Cd by increasing labile and less labile fractions of Cu and Cd compared with P. sinese treatments. Present results suggest that P. sinese is recommended as the remediation plant for phytoremediation aided by amendments.


Assuntos
Biodegradação Ambiental , Cádmio/análise , Cobre/análise , Poluentes do Solo/análise , Ácidos , Disponibilidade Biológica , Carbonato de Cálcio , Plantas , Sedum , Solo , Oligoelementos
16.
Natl Sci Rev ; 7(9): 1449-1457, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34691540

RESUMO

Hydropower development is the key strategy in many developing countries for energy supply, climate-change mitigation and economic development. However, it is commonly assumed that river dams retain nutrients and therefore reduce downstream primary productivity and fishery catches, compromising food security and causing trans-boundary disputes. Contrary to expectation, here we found that a cascade of reservoirs along the upper Mekong River increased downstream bioavailability of nitrogen and phosphorus. The dams caused phytoplankton density to increase with hydraulic residence time and stratification of the stagnant reservoirs caused hypoxia at depth. This allowed the release of bioavailable phosphorus from the sediment and an increase in dissolved inorganic nitrogen as well as a shift in nitrogen species from nitrate to ammonium, which were transported downstream by the discharge of water from the base of the dam. Our findings provide a new perspective on the environmental impacts of river dams on nutrient cycling and ecosystem functioning, with potential implications for sustainable development of hydropower worldwide.

17.
Sci Total Environ ; 710: 135672, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31785921

RESUMO

Sediment resuspension is one of the main factors impacting the ecological restoration of shallow eutrophic lakes, but the mechanisms connecting suspended particles and algal growth have not been clarified. Our research presents an innovative approach based on P reallocation among particles with various sizes, considering the changes in redox and pH conditions from the sediments to the overlying water during resuspension. A lab-scale experiment was conducted to simulate P reallocation in particles during sediment resuspension by periodically dosing the system with P and/or organic carbon. The sediments were sampled and sieved into five particle size groups, namely, 50-150 µm, 30-50 µm, 10-30 µm, 5-10 µm and <5 µm, and their P fractions during the operation were analyzed. The bioavailable P associated with aluminum (Al) and iron (Fe) (hydr)oxides showed exponential enrichment as the median grain size of particles decreased, with 54% of the added P adsorbed by fine particles of <10 µm (5-10 µm and <5 µm). Furthermore, a bioassay of algae growth potential (Microcystis aeruginosa sp.), along with P adsorption isotherms, was conducted to test the ability of the different size-resolved particles to supply P for algae growth. The fine particles of <10 µm supplied more P to algae under elevated pH values than did the coarse particles (>10 µm). The restoration of shallow eutrophic lakes faces great challenges due to the connection mechanisms between sediments and algae, as revealed by this research.


Assuntos
Lagos , China , Eutrofização , Sedimentos Geológicos , Fósforo , Poluentes Químicos da Água
18.
Huan Jing Ke Xue ; 40(9): 4238-4243, 2019 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854890

RESUMO

This study tested a strategy in simulated column systems to control methane emissions from algal bloom waters using the combined technology of algae sedimentation and sediment capping. The results demonstrated that the synergy of algal sedimentation and sediment capping can effectively improve the water environment and reduce methane emissions; however, the improvement rate differed among capping materials. The use of activated carbon yielded better performance on the water environment improvement and methane emission control than soil and zeolite. Compared with the control system, the dissolved oxygen and redox potential in the water were increased from<2.5 mg·L-1 to 3.1 mg·L-1 and from<100 mV to 174 mV, respectively. In addition, the redox potential in the surface sediment was reversed from -125 mV to 168 mV after algal sedimentation with subsequent activated carbon capping. As a result, methane emissions in the algal sedimentation-activated carbon capping systems were decreased by 90.2% over the incubation period relative to the control system. This study provides useful insights into methane emission control in eutrophic waters.


Assuntos
Eutrofização , Lagos , Metano , Sedimentos Geológicos , Oxigênio , Solo
19.
Environ Int ; 127: 514-521, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981022

RESUMO

Estimations of antibiotic emission and fate and thereby ecological risk in rural catchments still lack feasible methods due to data scarcity. This study developed a new framework to evaluate the emission and fate of typical antibiotics for data-scarce catchments with uncertainty analysis. We estimated antibiotic discharge through questionnaire surveys; predicted antibiotic fate in air, water, soil, and sediment phases using a multimedia fugacity model; and analyzed the uncertainties of predicted environmental concentrations (PECs) and ecological risks of antibiotics. The developed method was tested in the Meijiang River catchment in China, and the uncertainty was systematically analyzed. Results showed that the discharge of tetracycline antibiotics (TCs) in the studied watershed was 8.56 t/a, with approximately 93% from veterinary medicine. TCs existed dominantly in the soil phase, accounting for 87.3% of total discharge. TC levels at the equilibrium states were the highest in sediment and soil, followed by water and air. The emission levels of TCs may cause slight risk to algae, daphniids, and fish in the receiving water based on the ecological risk evaluation of PECs. Despite of some uncertainties, the developed method provided an effective alternative to evaluate the ecological risks of antibiotics in catchments where sufficient monitored data are unavailable.


Assuntos
Antibacterianos/análise , China , Rios/química , Solo/química
20.
Sci Total Environ ; 670: 654-661, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30909043

RESUMO

Sediment resuspension widely occurs in environments with hydrodynamic disturbances, where particles are sieved into different grain size groups. The particles of different grain size exhibit heterogeneity of their physical, chemical or biological features. This research addressed the association of metals on size fractional particles sieved by sediment resuspension in a canal of Taihu basin, a highly urbanized and human-impacted area. Surface sediment samples were collected from upstream to downstream sections of the canal to analyze the concentrations and fractionation of lead (Pb), zinc (Zn), and copper (Cu). One sediment sample was sieved into five different particle size groups (50-150 µm, 30-50 µm, 10-30 µm, 5-10 µm and <5 µm) through the wet sedimentation method. The strong adsorption ability of metals on fine particles is attributed to enrichment with organic matter and iron/aluminum (Fe/Al) oxides, with the increase in Pb, Zn, and Cu concentrations from 34.2 mg/kg, 263 mg/kg, and 32.5 mg/kg of 50-150 µm size group particles to 71.4 mg/kg, 698 mg/kg, and 137 mg/kg of <5 µm size group particles, respectively. The fine particles showed stronger sorption ability on Pb than Zn and Cu, with the Freundlich isotherm constant (Kf) values of the adsorption isotherms in the <10 µm size particle group ranging from 3.7 to 5.9 g/kg for Zn and Cu versus from 11 to 18 g/kg for Pb, probably causing difference on metals accumulation and releasing risk among metals in the downstream lakes with changeable environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA