Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38214590

RESUMO

In a laser inertial confinement fusion (ICF) facility, an x-ray diode (XRD) detector is mainly used for precise measurement of black cavity radiation flow. The rapid rising time of the XRD detector and the intricate radiation environment of the ICF facility have posed new requirements for the bandwidth and anti-interference performance of signal digitization technologies. The standards are tough for the current recording system to meet. In this paper, based on the anti-interference of digital signals in the radiation field of the ICF facility, we have designed an XRD detector specific transient front-end signal digitizer (TFSD). The digitizer may be put together for consistent shielding in the radiation field since its size matches that of the XRD detector. The test results show that the TFSD has a higher signal input bandwidth than the existing recording method, considerably reduces the effect of pulse radiation field on signal recording, and significantly boosts the accuracy of recording and diagnosis.

2.
Appl Opt ; 63(2): 450-458, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38227242

RESUMO

The responsiveness of the photodetectors is critical to the accuracy of the fluorescent fiber optical temperature sensor. However, the current gain and signal-to-noise ratio (SNR) of traditional photodiodes (PDs) is low, which makes it difficult to meet the high-precision detection requirements of the system. In response to the above problems, this paper achieves a novel, to the best of our knowledge, multi-finger grating (MFG) avalanche photodiode (APD). The device combines the polysilicon gate and the space charge region formed by P+/N-Well to detect photon signals. The conversion capability of the photodetector can be significantly enhanced by the MFG structure. The principle of the device is simulated and verified by technology-computer-aided design (TCAD). The standard grating APD (SG-APD), 2-finger grating APD (2FG-APD), 3-finger grating APD (3FG-APD), and 4-finger grating APD (4FG-APD) are fabricated based on 0.18 µm CMOS process. The optoelectronic detection characteristics of these devices are analyzed by establishing an optoelectronic test platform. At 480 nm, the responsivity of 2FG-APD, 3FG-APD, and 4FG-APD increases by 79.3%, 96.9%, and 70.2%, respectively, compared to SG-APD (4.021 A/W). The test results indicate that 3FG-APD exhibits a strong photon response in the blue light range. The device has broad application prospects in the field of fluorescence detection.

3.
Rev Sci Instrum ; 88(8): 083115, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863660

RESUMO

X-ray imaging plates are one of the most important X-ray imaging detectors and are widely used in inertial-confinement fusion experiments. However, their linear response range, which is the foundation of their quantitative data analysis, has not been sufficiently deeply investigated. In this work, we develop an X-ray fluorescer calibration system and carefully explore the linear response range of X-ray imaging plates. For the first time, nearly the entire grayscale range of the X-ray imaging plate linear response-7819-64 879 in the range of 0-65 535-has been observed. Further, we discuss the uncertainties involved in the calibration process. This work demonstrates the excellent linear response qualities of X-ray imaging plates and provides a significant foundation for expanding their quantitative applied range.

4.
Rev Sci Instrum ; 85(3): 033504, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689582

RESUMO

Measuring the x-ray flux exiting the target's laser entrance hole (LEH) is the most common diagnostic that quantifies the x-ray intensity inside the laser-driven hohlraum. However, this signal accounts for only a small portion of the incident laser power and thus is likely to be affected by unwanted x-ray background from non-target area, leading to an overestimation of the hohlraum drive. Unwanted emission might be produced when the laser light is clipped by the LEH (LEH clipping) because of a lack of clearance for laser spot, or with a laser spot comprising of discrete structure, or even with a poor pointing accuracy. Its influence on the hohlraum radiation diagnostic is investigated on Shenguang-III prototype laser facility with the typical 1 ns square pulse. The experiment employed three types of targets to excite the unwanted x-ray background from LEH clipping, unconverted light, and both effects, respectively. This work gives an absolute evaluation of x-ray produced by the LEH clipping, which is measured by flat-response x-ray detectors (FXRD) at multiple view angles. The result indicates that there is little variation in measured emission to various view angles, because the unwanted x-rays are mainly generated at the side face of the LEH lip when laser is obliquely incident. Therefore, the LEH clipping brings more overestimation in hohlraum radiation measurement at larger view angle since the hohlraum LEH as an emitting source viewed by FXRD is decreased as the view angle increases. In our condition, the LEH clipping contributes 2%-3.5% overestimation to the hohlraum flux measurement.

5.
Phys Rev Lett ; 109(14): 145004, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23083253

RESUMO

The proposal of simultaneously determining the hohlraum peak radiation temperature T(R) and M-band fraction f(M) by shock velocity measurement technique [Y. S. Li et al. Phys. Plasmas 18, 022701 (2011)] is demonstrated for the first time in recent experiments conducted on SGIII-prototype laser facility. In the experiments, T(R) and f(M) are determined by using the observed shock velocities in Al and Ti. For the Au hohlraum used in the experiments, T(R) is about 160 eV and f(M) is around 4.3% under a 1 ns laser pulse of 2 kJ. The results from this method are complementary to those from the broadband x-ray spectrometer, and the technique can be further used to determine T(R) and f(M) inside an ignition hohlraum.

6.
Rev Sci Instrum ; 81(7): 073504, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20687719

RESUMO

A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...