Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 164: 110192, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608409

RESUMO

Papain, as a classical cysteine protease, has been widely used in the food, pharmaceutical, chemical, and cosmetic fields. However, there are few information about the peroxidase-like activity of papain catalyzed substrate to produce fluorescence. In this study, we found that papain can catalyze H2O2 to convert o-phenylenediamine (OPD), and generate fluorescence emission at 550 nm under 430 nm excitation. Based on this foundation, we report a papain/OPD/H2O2 system for fluorescence detection of uric acid. The method exhibits a wide linear range of 10-1000 µM with a limit-of-detection of 4.6 µM, and has been successfully used to detect uric acid in human serum. This study paves the way for the application of papain as catalyst for fluorescence detection of different target biomolecules, such as cholesterol, glucose, lactate, for which H2O2 is a product of oxidoreductase enzymes.


Assuntos
Medições Luminescentes , Papaína , Ácido Úrico , Humanos , Catálise , Corantes , Peróxido de Hidrogênio/química , Limite de Detecção , Papaína/química , Peroxidase/química , Ácido Úrico/sangue , Fluorescência
2.
RSC Adv ; 12(18): 10915-10923, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35425066

RESUMO

p-Nitrophenol (PNP) is a toxic contaminant in water, the detection of which has attracted considerable attention. Since ionic liquids (ILs) have been widely used as popular solvents in both extraction and catalysts for PNP, the remediation of PNP is not limited to water and traditional organic solvents. Thus, it is significant to develop approaches for the detection of PNP in ILs. Accordingly, the present work is focused on the detection of PNP in a series of imidazolium-based ILs, 1-hexyl-3-methyl-imidazolium bromide ([Hmim]Br), 1-butyl-3-methyl-imidazolium tetrafluoroborate ([Bmim]BF4), 1-butyl-3-methyl-imidazolium trifluoromesulfonate ([Bmim]TfO), 1-butyl-3-methyl-imidazolium trifluoroacetate ([Bmim]TA), and 1-butyl-3-methyl-imidazolium nitrate ([Bmim]NO3), using a europium-based fluorescent probe, Na3[Eu(DPA)3] (DPA = 2, 6-pyridinedicarboxylic acid). This fluorescent probe showed excellent selectivity and sensitivity toward [Bmim]NO3 in aqueous solution. Further studies showed that not only the fluorescence performance of the europium complex was enhanced in the other four ILs compared with that in water, but also the detecting capability for PNP was improved. The order of the quenching efficiency in different solvents was: [Bmim]BF4 > [Bmim]TfO > [Hmim]Br > [Bmim]TA > water. The higher sensitivity for PNP in ILs was proven to be related to the efficient energy transfer of the europium complex and lower solvent polarity of the ILs. The quenching mechanism for the detection of PNP was established as being due to the ground state electrostatic interactions between the fluorescent probe and analyte, photoinduced electron transfer (PET) and inner filter effect (IFE).

3.
ACS Omega ; 4(6): 9843-9849, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460075

RESUMO

Soft luminescent materials have attracted much attention because of their self-assembled and controllable properties. To explore their facile and effective fabrication ways, we report here the self-assembling of luminescent vesicles and lyotropic liquid crystals (LLCs) in a protic ionic liquid, ethylammonium nitrate, by a partially amphiphilic europium ß-diketonate complex (Eu(III)) with a 1-dodecyl-3-methylimidazolium cation as the counter ion. An interesting result came from the complex-induced vesicle formation of corresponding amphiphile, 1-dodecyl-3-methylimidazolium bromide ([C12mim]Br), which has been rarely reported in the past. It was the interaction between the Eu(III) and imidazolium group that changed the critical packing parameter of [C12mim]Br, which finally resulted in the occurrence of vesicles. The obtained vesicle aggregates exhibited enhanced fluorescence intensity and lifetime compared to those of Eu(III) solution. Meanwhile, a hexagonal LLC phase with better fluorescence properties was found at higher [C12mim]Br concentration. The obtained photophysical data confirmed that the order degree of Eu(III)-containing aggregates could effectively increase the energy transition efficiency of ligands. The better luminescent properties of LLC resulted from the stronger stabilizing and binding effects on Eu(III) in LLC than that in vesicles, which might be caused by closer molecular packing in LLC. The results presented here will not only expand the strategy of constructing lanthanide-containing luminescent soft materials in ionic liquids but also provide reference to better understand the effect of organized aggregates on luminescence properties.

4.
J Phys Chem B ; 121(51): 11528-11536, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29199825

RESUMO

Hybridization of polyoxometalates (POMs) with cationic surfactants offers the opportunity to greatly improve their functionalities as well as processabilities. Here, a surfactant-encapsulated Eu-containing POM complex (SEP) was formed via electrostatic interaction between 1-octadecyl-3-methylimidazolium bromide (OB) and Na9(EuW10O36)·32H2O (EuW10). SEP was first self-assembled in a protic ionic liquid to prepare the soft aggregates to fundamentally avoid the fluorescence quenching by water molecules. The structures and photophysical properties of SEP or aggregates were investigated thoroughly by NMR and FTIR spectroscopy, optical and electron microscopy, small-angle X-ray scattering, and fluorescence measurements. The formed gel-like aggregates were found to compose of three-dimensional networks of microribbons with an interdigitated layered molecular packing of SEP, which was different from the usual inverse bilayer model of POM hybrids in common organic solvents. Compared to EuW10 solid or its aqueous solution, both SEP and its aggregates exhibited intense red luminescence with much improved lifetime and quantum efficiency. In addition, the soft aggregates exhibited an efficient energy transfer and an obviously enhanced monochromaticity, owning to the organized arrangement of EuW10 units and a confined microenvironment to isolate them from each other between adjacent layers. The obtained results will not only present a useful reference to the aggregation behavior of POM hybrids in ionic liquids, but also provide an easy way to design EuW10 luminescent soft materials based on the nonaqueous media.

5.
Soft Matter ; 13(37): 6490-6498, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28880328

RESUMO

A novel photo-responsive anionic surfactant with a dimethylamino-substituted azobenzene located at the end of the hydrophobic chain, 6-(4-dimethylaminoazobenzene-4'-oxy)hexanoate sodium (DAH), has been designed. Through the host-guest interaction in aqueous solution, the trans-DAH could be spontaneously included by using two native α-cyclodextrin (α-CD) molecules. The formed hydrophilic inclusion complex (DAH@2α-CD), however, could act as a gelator to induce the formation of a supramolecular hydrogel, which is driven mainly by hydrogen bonds between neighboring α-CDs and also between the carboxylate in DAH and water. Compared with common hydrogels that consist of networks with fibres or discrete polymer chains, the hydrogel formed by DAH@2α-CD was composed of periodic lamellar structures possessing good shear-thinning behavior and much swollen water layers. The more interesting point for such a hydrogel was its visible-light responsibility for gel-sol reversible phase transition. This originated from the introduction of an electron-donating group (dimethylamino) to azobenzene, which noticeably red-shifted the responsive wavelength for its trans-to-cis isomerization. It was also worth noting that the host-guest interaction between azobenzene in DAH and α-CD significantly improved the photo-transition efficiency from trans to cis forms of azobenzene, which played a critical role in the visible-light responsibility of the hydrogel. This unique visible-light-responsive behavior combined with the inherent thermo-responsive property from α-CD should make the prepared hydrogel find more potential applications in biomedical systems.

6.
J Phys Chem B ; 121(39): 9302-9310, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28876934

RESUMO

Soft materials of europium ß-diketonate complexes constructed in lyotropic liquid crystals (LLCs) mediated by ionic liquids (ILs) are impressive for their excellent luminescence performance and stability. For the aim to further improve their mechanical processability and luminescent tunablility, the polyoxyethylene phytosterols (BPS-n) were introduced here as structure directing agents to prepare relatively "rigid" lamellar luminescent LLCs in 1-butyl-3-methyl-imidazolium hexafluorophosphate by doping europium ß-diketonate complexes with different imidazolium counterions. As a result of the solvophobic sterol ring structure of BPS-n, the more effective isolation and confinement effects of europium complexes could be achieved. The longest fluorescence lifetime and the highest quantum efficiency reported so far for europium containing lyotropic organized soft materials were thus obtained. Changing the molecular structures of BPS-n with different oxyethylene chains or doped complexes with imidazolium counterions of different alkyl chain lengths, the spacings of lamellar LLC matrixes and position of dispersed complexes became tunable. The measured luminescent and rheological properties for such composite LLCs showed a dependence on the rigidity and isolation capability afforded by sterol molecules. It was also found that the increase of counterion alkyl chain length would weaken the LLC matrix's confinement and isolation effects and therefore exhibit the deteriorated luminescence performance. The enhanced luminescence efficiency and stability of doped BPS-n LLCs reflected the excellent segregation of europium complexes from each other and therefore the reduced self-quenching process. The obtained results here present the designability of LLC matrixes and their great potential to promote achieving the luminescence tunability of soft materials.

7.
Soft Matter ; 12(48): 9641-9648, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27858041

RESUMO

A cationic surfactant with adamantane as the end group, 1-[11-((adamantane-1-carbonyl)oxy)-undecyl]pyridinium bromide (AP), has been synthesized. Its ß-cyclodextrin (ß-CD) induced hierarchical self-assembling behaviors in aqueous solution were investigated using transmission or scanning electron microscopy methods and small-angle X-ray scattering measurements. Like conventional single chain surfactants, micelles could be formed by AP itself in dilute solutions. However, the dramatic phase transitions of these micelles occurred when host-guest inclusions between AP and ß-CD were sequentially produced at different host/guest molar ratios (R), corresponding to the supramolecules with different chemical structures. The AP micelles could be changed into spherical unilamellar vesicles by adding ß-CD to reach an R value of 1 : 1. Such vesicles then evolved into multi-wall nanotubes or hydrogels when the ß-CD amount was further increased to obtain an R value of 2 : 1. The unique structural characteristics of these supramolecular aggregates come from their "monolayer-like" walls, which have rarely been reported in the past for CD/surfactant inclusion complexes. The interesting results obtained here not only enrich the ß-CD/surfactant aggregation systems, but also provide a novel and facile strategy to tune the morphology and structure of aggregates.

8.
Phys Chem Chem Phys ; 18(39): 27603-27612, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27711658

RESUMO

Soft lanthanide luminescent materials are impressive because of their tunable and self-assembling characteristics, which make them an attractive emerging materials field of research. In this report, novel luminescent lyotropic liquid crystals (LLCs) with four different mesophases have been fabricated by a protic ionic liquid (IL) based europium ß-diketonate complex EA[Eu(TTA)4] (EA = ethylammonium, TTA = 2-thenoyltrifluoro-acetone) and an amphiphilic block copolymer (Pluronic P123). The protic IL, ethylammonium nitrate (EAN), was used as both the solvent and linkage to stabilize the doped complexes. Analyses by single-crystal X-ray diffraction for EA[Eu(TTA)4] and Fourier transform infrared spectroscopy for the LLC materials reveal convincingly that the ethylammonium cations establish an effective connection with both the carbonyl group of the ß-diketonate ligand and the EO blocks of the amphiphilic block copolymer P123 via strong hydrogen bonding interactions. Due to this, an extremely long decay time of the excited state is obtained in EA[Eu(TTA)4] and excellent photostability of the luminescent LLCs could be achieved. The long-period ordered structures of the luminescent LLCs have been investigated by small-angle X-ray scattering measurements and the best luminescence performance was found in the most organized mesophase. Noteworthy, the LLCs could yield an effective confining effect on the europium complex accompanied by a sizeable elongation of the excited-state lifetime and an enhancement of the energy transfer efficiency, which reaches a remarkably high value of 52.6%. More importantly, the modulated luminescence properties observed in the four mesophase structures offer the potential and powerful possibility for these unique composite LLCs to be used in the fabrication of soft luminescent materials with tunable functions.

9.
Phys Chem Chem Phys ; 17(31): 20322-30, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26190789

RESUMO

Luminescent materials from europium ß-diketonate complex in ionic liquids (ILs) could achieve enhanced luminescence efficiencies and photostabilities. However, the question of how to provide a feasible and environmentally-friendly way to distribute these lanthanide complexes uniformly and stably within IL-based matrix remains a significant challenge. Here, a soft luminescent material from IL-mediated lyotropic liquid crystals (LLCs) doped with [Bmim][Eu(TTA)4] (Bmim = 1-butyl-3-methyl imidazolium, TTA = 2-thenoyltrifluoroacetone) has been constructed by a convenient self-assembling method. The hexagonal or lamellar LLC phases could be identified by small-angle X-ray scattering (SAXS) measurements. All LLC samples exhibited intense red luminescence upon exposure to ultraviolet radiation. The good dispersibility of the complexes in LLC matrices and their good photostability (as in ILs) was verified by steady-state luminescence spectroscopy. The isolated and unique characteristics of the microenvironment within the LLCs were noteworthy to decrease the nonradiative deactivation of the excited states, thereby allowing more efficient energy transfer and longer lifetimes than those in pure complex or IL solutions. Both the luminescent property and the stability of the LLC materials were different in different phase structures, the complexes behaving better in the lamellar phase than in the hexagonal one. The findings reported herein will not only present an easy way to design novel luminescent lanthanide ß-diketonate soft materials, but also provide a useful reference to better understand the LLC phase structure effects on the luminescence properties.

10.
J Phys Chem B ; 118(39): 11581-90, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25215923

RESUMO

Fabrication of lyotropic aggregates containing the lanthanide ions is becoming a preferable way to prepare novel functional materials. Here, the lyotropic liquid crystals (LLCs) of reverse hexagonal, reverse bicontinuous cubic, and lamellar phases have been constructed in sequence directly from the mixtures of Eu(NO3)3·6H2O and Pluronic P123 amphiphilc block copolymer with increasing the salt proportion. Their phase types and structural characteristics were analyzed using polarized optical microscopy (POM) and small-angle X-ray scattering (SAXS) measurements. The driving forces of reverse LLC phase formation were investigated using Fourier-transformed infrared spectroscopy (FTIR) and rheological measurements. The hydrated europium salt was found to act not only as a solvent here, but also as the bridge to form hydrogen bonding between coordinated water molecules and PEO blocks, which played a key role in the reverse LLCs formation. Compared to those in aqueous solutions and solid state, the enhanced luminescence quantum yields and prolonged excited state lifetimes were observed in two europium containing reverse mesophases. The luminescence quenching effect of lanthanide ions was efficiently suppressed, probably due to the substitution of coordinated water molecules by oxyethyl groups of P123 and ordered phase structures of LLCs, where the coordinated europium ions were confined and isolated by PEO blocks. The optimum luminescence performance was then found to exist in the reverse hexagonal phase. The obtained results on such lanthanide-induced reverse LLCs should be referable for designing new luminescent soft materials construction to expand their application fields.


Assuntos
Európio/química , Cristais Líquidos/química , Nitratos/química , Poloxaleno/química , Ligação de Hidrogênio , Medições Luminescentes , Reologia , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...