Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 479
Filtrar
1.
Cell Metab ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38701775

RESUMO

Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.

2.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675642

RESUMO

Flower color is an important ornamental feature that is often modulated by the contents of flavonoids. Chalcone synthase is the first key enzyme in the biosynthesis of flavonoids, but little is known about the role of R. delavayi CHS in flavonoid biosynthesis. In this paper, three CHS genes (RdCHS1-3) were successfully cloned from R. delavayi flowers. According to multiple sequence alignment and a phylogenetic analysis, only RdCHS1 contained all the highly conserved and important residues, which was classified into the cluster of bona fide CHSs. RdCHS1 was then subjected to further functional analysis. Real-time PCR analysis revealed that the transcripts of RdCHS1 were the highest in the leaves and lowest in the roots; this did not match the anthocyanin accumulation patterns during flower development. Biochemical characterization displayed that RdCHS1 could catalyze p-coumaroyl-CoA and malonyl-CoA molecules to produce naringenin chalcone. The physiological function of RdCHS1 was checked in Arabidopsis mutants and tobacco, and the results showed that RdCHS1 transgenes could recover the color phenotypes of the tt4 mutant and caused the tobacco flower color to change from pink to dark pink through modulating the expressions of endogenous structural and regulatory genes in the tobacco. All these results demonstrate that RdCHS1 fulfills the function of a bona fide CHS and contributes to flavonoid biosynthesis in R. delavayi.


Assuntos
Aciltransferases , Chalconas , Flavonoides , Flores , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Rhododendron , Aciltransferases/genética , Aciltransferases/metabolismo , Flavonoides/biossíntese , Flavonoides/metabolismo , Rhododendron/genética , Rhododendron/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Antocianinas/biossíntese , Antocianinas/metabolismo , Clonagem Molecular , Mutação
3.
Carbohydr Polym ; 334: 122039, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553236

RESUMO

Biological processes, such as bone defects healing are precisely controlled in both time and space. This spatiotemporal characteristic inspires novel therapeutic strategies. The sustained-release systems including hydrogels are commonly utilized in the treatment of bone defect; however, traditional hydrogels often release drugs at a consistent rate, lacking temporal precision. In this study, a hybrid hydrogel has been developed by using sodium alginate, sucrose acetate isobutyrate, and electrospray microspheres as the base materials, and designed with ultrasound response, and on-demand release properties. Sucrose acetate isobutyrate was added to the hybrid hydrogel to prevent burst release. The network structure of the hybrid hydrogel is formed by the interconnection of Ca2+ with the carboxyl groups of sodium alginate. Notably, when the hybrid hydrogel is exposed to ultrasound, the ionic bond can be broken to promote drug release; when ultrasound is turned off, the release returned to a low-release state. This hybrid hydrogel reveals not only injectability, degradability, and good mechanical properties but also shows multiple responses to ultrasound. And it has good biocompatibility and promotes osteogenesis efficiency in vivo. Thus, this hybrid hydrogel provides a promising therapeutic strategy for the treatment of bone defects.


Assuntos
Alginatos , Sistemas de Liberação de Medicamentos , Microesferas , Alginatos/química , Regeneração Óssea , Osteogênese , Hidrogéis/química
4.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464060

RESUMO

Vascular inflammation critically regulates endothelial cell (EC) pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulation of lysosomal activity and cholesterol metabolism have known inflammatory roles in disease, but their relevance to PAH is unclear. In human pulmonary arterial ECs and in PAH, we found that inflammatory cytokine induction of the nuclear receptor coactivator 7 (NCOA7) both preserved lysosomal acidification and served as a homeostatic brake to constrain EC immunoactivation. Conversely, NCOA7 deficiency promoted lysosomal dysfunction and proinflammatory oxysterol/bile acid generation that, in turn, contributed to EC pathophenotypes. In vivo, mice deficient for Ncoa7 or exposed to the inflammatory bile acid 7α-hydroxy-3-oxo-4-cholestenoic acid (7HOCA) displayed worsened PAH. Emphasizing this mechanism in human PAH, an unbiased, metabolome-wide association study (N=2,756) identified a plasma signature of the same NCOA7-dependent oxysterols/bile acids associated with PAH mortality (P<1.1x10-6). Supporting a genetic predisposition to NCOA7 deficiency, in genome-edited, stem cell-derived ECs, the common variant intronic SNP rs11154337 in NCOA7 regulated NCOA7 expression, lysosomal activity, oxysterol/bile acid production, and EC immunoactivation. Correspondingly, SNP rs11154337 was associated with PAH severity via six-minute walk distance and mortality in discovery (N=93, P=0.0250; HR=0.44, 95% CI [0.21-0.90]) and validation (N=630, P=2x10-4; HR=0.49, 95% CI [0.34-0.71]) cohorts. Finally, utilizing computational modeling of small molecule binding to NCOA7, we predicted and synthesized a novel activator of NCOA7 that prevented EC immunoactivation and reversed indices of rodent PAH. In summary, we have established a genetic and metabolic paradigm and a novel therapeutic agent that links lysosomal biology as well as oxysterol and bile acid processes to EC inflammation and PAH pathobiology. This paradigm carries broad implications for diagnostic and therapeutic development in PAH and in other conditions dependent upon acquired and innate immune regulation of vascular disease.

5.
BMC Med Educ ; 24(1): 333, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521917

RESUMO

OBJECTIVES: To evaluate the process and the comprehensiveness of advance care planning (ACP), we designed a national ACP-OSCE (Objective Structured Clinical Examination) program. METHODS: The program was designed as a 40-minute OSCE test. Participants were categorized as different ACP team members to illustrate realistic scenarios. Preceptors were asked to observe ACP professionals' actions, responses, and communication skills during ACP with standardized patients (SP) through a one-way mirror. Participants' communication skills, medical expertise, legal knowledge, empathetic response and problem-solving skills of ACP were also self-evaluated before and after OSCE. Thematic analysis was used for qualitative analysis. RESULTS: In Nov 2019, a total of 18 ACP teams with 38 ACP professionals completed the ACP-OSCE program, including 15 physicians, 15 nurses, 5 social workers, and 3 psychologists. After the ACP-OSCE program, the average score of communication skills, medical expertise, legal knowledge, empathetic response, ACP problem-solving all increased. Nurses felt improved in medical expertise, legal knowledge, and problem-solving skills, psychologists and social workers felt improved in legal knowledge, while physicians felt no improved in all domain, statistically. Thematic analysis showed professional skills, doctoral-patient communication, benefit and difficulties of ACP were the topics which participants care about. Meanwhile, most participants agreed that ACP-OSCE program is an appropriate educational tool. CONCLUSION: This is the first national ACP-OSCE program in Asia. We believe that this ACP-OSCE program could be applied in other countries to improve the ACP process and quality.


Assuntos
Planejamento Antecipado de Cuidados , Exame Físico , Humanos , Taiwan , Ásia , Competência Clínica
6.
PeerJ ; 12: e17137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529310

RESUMO

Gleditsia sinensis, commonly known as Chinese Zaojiao, has important economic value and medicinal compounds in its fruits and thorns, making it widely cultivated artificially in China. However, the available literature on the impact of waterlogging on the growth of G. sinensis seedlings and the accumulation of metabolite compounds in its thorns is limited. To address this knowledge gap, G. sinensis seedlings were planted in soil supplemented with pindstrup substrate, which enhances the water-holding capacity of the soil. The analyses of morphological traits and nutrient elements in one-year-old G. sinensis seedlings grown naturally under ambient conditions and metabolite accumulation in its thorns were conducted. The results showed that the waterlogged soil significantly diminished the height, fresh weight, and dry weight of seedling roots and stems (P < 0.05). Furthermore, waterlogging hindered the uptake of iron (Fe) and manganese (Mn), as well as the transport of potassium (K). The identified metabolites within the thorns were categorized into 16 distinct groups. Relative to the control soil, fatty acids and derivatives were the most down-regulated metabolites in the waterlogged soil, accounting for 40.58% of the total metabolites, followed by lignans (38.71%), phenolic acids (34.48%), saccharides and alcohols (34.15%), steroids (16.67%), alkaloids (12.24%), flavonoids (9.28%), and glycerophospholipids (7.41%). Conversely, nucleotides and derivatives experienced the greatest up-regulation in the waterlogged soil, accounting for 50.00% of the total metabolites. In conclusion, waterlogging negatively impacted the growth of G. sinensis seedlings and inhibited the accumulation of metabolites. Hence, when considering the accumulation of secondary metabolites such as lignans and phenolic acids, appropriate management of soil moisture levels should be taken into account.


Assuntos
Gleditsia , Lignanas , Plântula , Lignanas/metabolismo , Gleditsia/química , Extratos Vegetais/metabolismo , Raízes de Plantas
7.
BMC Cancer ; 24(1): 353, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504158

RESUMO

NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Neoplasias da Mama/genética , Apoptose , Mama , Proliferação de Células/genética , Prognóstico , Microambiente Tumoral/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética
8.
Chem Commun (Camb) ; 60(21): 2914-2917, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372145

RESUMO

Nickel-based electrocatalysts for water oxidation suffer from low activity and poor stability. In this work, 0.015 mg cm-2 TiO2 nanosheets anchored on Ni foam addressed these problems after electrochemical activation. In situ investigations, including Raman spectra, corroborated the enhanced generation of highly active Ni(III)-O-O species on Ni foam in the presence of trace TiO2.

9.
Physiol Plant ; 176(1): e14211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351399

RESUMO

Alpine Rhododendron species are prominent constituents and renowned ornamental plants in alpine ecosystems. Consequently, evaluating the genetic variation in embolism resistance within the genus Rhododendron and predicting their adaptability to future climate change is important. Nevertheless, the assessment of embolism resistance in Rhododendron species remains limited. This investigation aimed to examine leaf vulnerability to embolism across ten alpine Rhododendron species, which are frequently employed as ornamental species in Rhododendron forests in Southwest China. The study analyzed the correlation between embolism resistance and various morphological traits, while also conducting water control experiments to evaluate the relationship between embolism resistance and drought resistance. The outcomes indicated pronounced variations in leaf vulnerability to embolism among species, as reflected by the water potential at 50% of embolized pixels (P50 ). Furthermore, the leaf P50 exhibited a significant positive correlation with vessel diameter (D) (R2 = 0.44, P = 0.03) and vessel wall span (b) (R2 = 0.64, P = 0.005), while displaying a significant negative correlation with vessel reinforcement ((t/b)2 ) (R2 = 0.67, P = 0.004). These findings underscore the reliability of selecting species based on embolism vulnerability to preserve the diversity of alpine ecosystems and foster resilience to climate change.


Assuntos
Embolia , Rhododendron , Ecossistema , Reprodutibilidade dos Testes , Folhas de Planta , Água , China
10.
Planta ; 259(3): 68, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38337086

RESUMO

MAIN CONCLUSION: Overexpression and loss of function of OsGEX3 reduce seed setting rates and affect pollen fertility in rice. OsGEX3 positively regulates osmotic stress response by regulating ROS scavenging. GEX3 proteins are conserved in plants. AtGEX3 encodes a plasma membrane protein that plays a crucial role in pollen tube guidance. However, the function of its homolog in rice, OsGEX3, has not been determined. Our results demonstrate that OsGEX3 is localized in the plasma membrane and the nucleus as shown by a transiently transformed assay using Nicotiana benthamiana leaves. The up-regulation of OsGEX3 was detected in response to treatments with polyethylene glycol (PEG) 4000, hydrogen peroxide, and abscisic acid (ABA) via RT-qPCR analysis. Interestingly, we observed a significant decline in the seed setting rates of OsGEX3-OE lines and mutants, compared to the wild type. Further investigations reveal that overexpression and loss of function of OsGEX3 affect pollen maturation. TEM observation revealed a significant decrease in the fertile pollen rates of OsGEX3-OE transgenic lines and Osgex3 mutants due to a delay in pollen development at the late vacuolated stage. Overexpression of OsGEX3 improved osmotic stress and oxidative stress tolerance by enhancing reactive oxygen species (ROS) scavenging in rice seedlings, whereas Osgex3 mutants exhibited an opposite phenotype in osmotic stress. These findings highlight the multifunctional roles of OsGEX3 in pollen development and the response to abiotic stress. The functional characterization of OsGEX3 provides a fundamental basis for rice molecular breeding and can facilitate efforts to cultivate drought resistance and yield-related varieties.


Assuntos
Oryza , Espécies Reativas de Oxigênio/metabolismo , Oryza/fisiologia , Pressão Osmótica , Reprodução , Estresse Oxidativo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Sci Transl Med ; 16(729): eadd2029, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198571

RESUMO

Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , RNA Longo não Codificante , Humanos , Ratos , Animais , Camundongos , Alelos , Hipertensão Pulmonar/genética , Histonas , RNA Longo não Codificante/genética , Roedores , Lisina , Hipertensão Pulmonar Primária Familiar , Hipóxia/genética , Metiltransferases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
12.
Glob Chang Biol ; 30(1): e17111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273581

RESUMO

While there is an extensive body of research on the influence of climate warming on total soil microbial communities, our understanding of how rhizosphere and non-rhizosphere soil microorganisms respond to warming remains limited. To address this knowledge gap, we investigated the impact of 4 years of soil warming on the diversity and composition of microbial communities in the rhizosphere and non-rhizosphere soil of a temperate steppe, focusing on changes in root exudation rates and exudate compositions. We used open top chambers to simulate warming conditions, resulting in an average soil temperature increase of 1.1°C over a span of 4 years. Our results showed that, in the non-rhizosphere soil, warming had no significant impact on dissolved organic carbon concentrations, compositions, or the abundance of soil microbial functional genes related to carbon and nitrogen cycling. Moreover, soil microbial diversity and community composition remained largely unaffected, although warming resulted in increased complexity of soil bacteria and fungi in the non-rhizosphere soil. In contrast, warming resulted in a substantial decrease in root exudate carbon (by 19%) and nitrogen (by 12%) concentrations and induced changes in root exudate compositions, primarily characterized by a reduction in the abundance in alcohols, coenzymes and vitamins, and phenylpropanoids and polyketides. These changes in root exudation rates and exudate compositions resulted in significant shifts in rhizosphere soil microbial diversity and community composition, ultimately leading to a reduction in the complexity of rhizosphere bacterial and fungal community networks. Altered root exudation and rhizosphere microbial community composition therefore decreased the expression of functional genes related to soil carbon and nitrogen cycling. Interestingly, we found that changes in soil carbon-related genes were primarily driven by the fungal communities and their responses to warming, both in the rhizosphere and non-rhizosphere soil. The study of soil microbial structure and function in rhizosphere and non-rhizosphere soil provides an ideal setting for understanding mechanisms for governing rhizosphere and non-rhizosphere soil carbon and nitrogen cycles. Our results highlight the distinctly varied responses of soil microorganisms in the rhizosphere and non-rhizosphere soil to climate warming. This suggests the need for models to address these processes individually, enabling more accurate predictions of the impacts of climate change on terrestrial carbon cycling.


Assuntos
Rizosfera , Solo , Solo/química , Microbiologia do Solo , Carbono/metabolismo , Nitrogênio/metabolismo
13.
Planta ; 259(2): 35, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193994

RESUMO

MAIN CONCLUSION: OsNAC103 negatively regulates rice plant height by influencing the cell cycle and crosstalk of phytohormones. Plant height is an important characteristic of rice farming and is directly related to agricultural yield. Although there has been great progress in research on plant growth regulation, numerous genes remain to be elucidated. NAC transcription factors are widespread in plants and have a vital function in plant growth. Here, we observed that the overexpression of OsNAC103 resulted in a dwarf phenotype, whereas RNA interference (RNAi) plants and osnac103 mutants showed no significant difference. Further investigation revealed that the cell length did not change, indicating that the dwarfing of plants was caused by a decrease in cell number due to cell cycle arrest. The content of the bioactive cytokinin N6-Δ2-isopentenyladenine (iP) decreased as a result of the cytokinin synthesis gene being downregulated and the enhanced degradation of cytokinin oxidase. OsNAC103 overexpression also inhibited cell cycle progression and regulated the activity of the cell cyclin OsCYCP2;1 to arrest the cell cycle. We propose that OsNAC103 may further influence rice development and gibberellin-cytokinin crosstalk by regulating the Oryza sativa homeobox 71 (OSH71). Collectively, these results offer novel perspectives on the role of OsNAC103 in controlling plant architecture.


Assuntos
Oryza , Fatores de Transcrição , Fatores de Transcrição/genética , Oryza/genética , Ciclo Celular/genética , Divisão Celular , Citocininas
14.
Phytochem Anal ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38219286

RESUMO

INTRODUCTION: Zishui-Qinggan decoction (ZQD) is a classical traditional Chinese medicine formula (TCMF) for alleviating menopausal symptoms (MPS) induced by endocrine therapy in breast cancer patients. In the production of TCMF modern preparations, ethanol precipitation (EP) is a commonly but not fully verified refining process. OBJECTIVES: Chemical profiling/serum pharmacochemistry and network pharmacology approaches were integrated for exploring the rationality of the EP process in the production of ZQD modern preparations. MATERIAL AND METHODS: Ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) was applied to identify the chemical profiles and absorbed components of ZQD. Network pharmacology was used to identify targets and pathways related to MPS-relieving efficacy. RESULTS: The chemicals of ZQDs without/with EP process (referred to as ZQD-W and ZQD-W-P, respectively) were qualitatively similar with 89 and 87 components identified, respectively, but their relative contents were different; 51 components were detectable in the serum of rats orally administered with ZQD-W, whereas only 19 were detected in that administered with ZQD-W-P. Key targets, such as AKT1, and pathways, such as the PI3K-Akt signalling pathway, affected by ZQD-W and ZQD-W-P were similar, while the neuroactive ligand-receptor interaction pathway among others and the MAPK signalling pathway among others were specific pathways affected by ZQD-W and ZQD-W-P, respectively. The specifically absorbed components of ZQD-W could combine its specific key targets. CONCLUSION: The EP process quantitatively altered the chemical profiles of ZQD, subsequently affected the absorbed components of ZQD, and then affected the key targets and pathways of ZQD for relieving MPS. The EP process might result in variation of the MPS-relieving efficacy of ZQD, which deserves further in vivo verification.

15.
Eur Arch Otorhinolaryngol ; 281(4): 1651-1657, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38057489

RESUMO

PURPOSE: Pet exposure has always been controversial with childhood asthma and allergic rhinitis. We aimed to understand the prevalence of asthma and allergic rhinitis in children exposed to pets by meta-analysis. METHODS: We searched articles published from Jan 1, 2012 to Dec 31, 2022 in the Embase, PubMed, Cochrane Library, and Web of Science databases. We included a cross-sectional study that reported the prevalence of asthma and allergic rhinitis in children exposed to pets. Furthermore, we performed subgroup analyses according to pet type and age. RESULTS: In 14 selected studies, the meta-analysis results showed that the pooled prevalence of asthma in children exposed to pets was 19.0% (95% CI 13.3-24.7%), and the pooled prevalence of allergic rhinitis in children exposed to pets was 25.5% (95% CI 12.4-38.5%). The prevalence of asthma in children exposed to cats and dogs was 16.4% (95% CI 9.9-22.8%) and 12.5% (95% CI 8.7-16.2%), respectively. The prevalence of allergic rhinitis was 24.9% (95% CI 2.9-47.0%) and 24.1% (95% CI 2.6-45.6%), respectively. The prevalence of asthma in pet-exposed children was 17.1% (95% CI 12.3-22.0%) in the adolescence group (> 10 years) and 26.3% (95% CI 12.2-40.3%) in the childhood group (0-10 years). The prevalence of allergic rhinitis was 8.6% (95% CI 7.2-10.0%) in the adolescence group and 46.3% (95% CI 44.0-48.6%) in the childhood age group. CONCLUSIONS: The prevalence of asthma and allergic rhinitis in children exposed to pets is different. Exposure to pet cats is more prone to illness, and younger children are more susceptible to disease than older children.


Assuntos
Asma , Rinite Alérgica , Criança , Adolescente , Animais , Humanos , Gatos , Cães , Prevalência , Estudos Transversais , Animais de Estimação , Asma/epidemiologia , Asma/etiologia , Rinite Alérgica/epidemiologia
16.
Environ Sci Pollut Res Int ; 30(57): 120805-120819, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945954

RESUMO

High concentrations of arsenic in soil and plant systems are a threat to human health and ecosystems. The levels of phosphate ions in the soil strongly influence the soil efficacy and arsenic absorption by plants. This study investigated the effects of phosphate-solubilizing fungi (PSF) on environmental factors and structural changes in microbial community in soils contaminated with arsenic. Four experimental groups were created: control (CK), Penicillium GYAHH-CCT186 (W186), Aspergillus AHBB-CT196 (W196), and Penicillium GYAHH-CCT186 + Aspergillus AHBB-CT196 (W186 + W196), with Pakchoi (Brassica chinensis L.) as the test plant. Analysis of altered nutrient levels, enzyme activities and microbial community structure in the soil as well as the growth and physiological characteristics of Pakchoi, revealed a significant increase in the available phosphorus (AP), organic matter (OM), cation exchange capacity (CEC) and available arsenic (AAs) content of the soil following W186 + W196, W196 and W186 treatments. All experimental treatments enhanced the activity of soil ß-glucosidase (ß-GC) and soil catalase (S-CAT). W186 + W196 and W196 treatments significantly enhanced soil acid phosphatase (S-ACP) activity. Besides, W186 + W196 treatment significantly induced dehydrogenase (S-DHA) activity. Further, of the treatment with PSF increased the fresh weight, root length, plant height and chlorophyll levels while decreasing the arsenic accumulation in Pakchoi. Exposure to PSF also increased the activity of Ascomycota, Basidiomycota, Chytridiomycota, unclassified_Fungi, Mortierellomycota, Cryptomycota and Rozellomycota in the soil. The relative abundance of Ascomycota, Basidiomycota, and Mortierellomycota was positively correlated with the available nutrients (except iron) in the soil as well as enzyme activities. Consequently, the PSF improved the quality of soil and the safety of Pakchoi, suggesting that PSF can be utilized for the remediation of arsenic-contaminated soil.


Assuntos
Arsênio , Brassica , Microbiota , Poluentes do Solo , Humanos , Fosfatos/análise , Arsênio/análise , Rizosfera , Fungos , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
17.
Ecol Evol ; 13(11): e10714, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37953984

RESUMO

Nectar robbing can affect plant reproductive success directly by influencing female and male fitness, and indirectly by affecting pollinator behavior. Flowers have morphological and chemical features that may protect them from nectar robbers. Previous studies on nectar robbing have focused mainly on homotypic plants. It remains unclear how nectar robbing affects the reproductive success of distylous plants, and whether defense strategies of two morphs are different. Nectar-robbing rates on the long- and short-styled morph (L-morph, S-morph) of the distylous Tirpitzia sinensis were investigated. We compared floral traits, the temporal pattern of change in nectar volume and sugar concentration, nectar secondary metabolites, and sugar composition between robbed and unrobbed flowers of two morphs. We tested direct effects of nectar robbing on female and male components of plant fitness and indirect effects of nectar robbing via pollinators. Nectar-robbing rates did not differ between the two morphs. Flowers with smaller sepals and petals were more easily robbed. The floral tube diameter and thickness were greater in L-morphs than in S-morphs, and the nectar rob holes were significantly smaller in L-morphs than in S-morphs. Nectar robbing significantly decreased nectar replenishment rate but did not affect nectar sugar concentration or sugar composition. After robbery, the quantities and diversity of secondary compounds in the nectar of S-morphs increased significantly and total relative contents of secondary compounds in L-morphs showed no obvious changes. Nectar robbing could decrease female fitness by decreasing pollen germination rate and thus decreasing seed set. Nectar robbing had no significant effects on male fitness. Robbed flowers were less likely to be visited by hawkmoth pollinators, especially in S-morphs. These results suggest that nectar robbing could directly and indirectly decrease the female fitness of T. sinensis, and different morphs have evolved different defense mechanisms in response to nectar-robbing pressure.

18.
Microbiol Spectr ; 11(6): e0184023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930013

RESUMO

From 2008 to 2020, the Taiwan National Notifiable Disease Surveillance System database demonstrated that the incidence of non-vaccine serotype 23A invasive pneumococcal disease (IPD) approximately doubled. In this study, 276 non-repetitive pneumococcal clinical isolates were collected from two medical centers in Taiwan between 2019 and 2021. Of these 267 pneumococci, 60 were serotype 23A. Among them, 50 (83%) of serotype 23A isolates belonged to the sequence type (ST) 166 variant of the Spain9V-3 clone. Pneumococcal 23A-ST166 isolates were collected to assess their evolutionary relationships using whole-genome sequencing. All 23A-ST166 isolates were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299, the newly identified PBP2x-299 in Taiwan. Transformation of the pbp1a, pbp2b, and pbp2x alleles into the ß-lactam-susceptible R6 strain revealed that PBP2x-299 and PBP2b-11 increased the MIC of ceftriaxone and meropenem by 16-fold, respectively. Prediction analysis of recombination sites in PMEN3 descendants (23A-ST166 in Taiwan, 35B-ST156 in the United States, and 11A-ST838/ST6521 in Europe) showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displayed an evolutionary capacity for global dissemination and persistence, increasing IPD incidence, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases, and contributing to high antibiotic resistance. A clonal shift with a highly ß-lactam-resistant non-vaccine serotype 23A, from ST338 to ST166, increased in Taiwan. ST166 is a single-locus variant of the Spain9V-3 clone, which is also called the PMEN3 lineage. All 23A-ST166 isolates, in this study, were resistant to amoxicillin and meropenem, and 96% harbored a novel combination of penicillin-binding proteins (PBPs) (1a:2b:2x):15:11:299. PBP2x-299 and PBP2b-11 contributed to the increasing MIC of ceftriaxone and meropenem, respectively. Prediction analysis of recombination sites in PMEN3 descendants showed that adaptive evolution involved repeated, selectively favored convergent recombination in the capsular polysaccharide synthesis region, PBPs, murM, and folP genome sites. In the late 13-valent pneumococcal conjugate vaccine era, PMEN3 continuously displays the evolutionary capacity for dissemination, leading to an offset in the decrease of pneumococcal conjugate vaccine serotype-related diseases and contributing to high antibiotic resistance.


Assuntos
Amoxicilina , Infecções Pneumocócicas , Humanos , Amoxicilina/farmacologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Meropeném , Espanha/epidemiologia , Ceftriaxona , Taiwan/epidemiologia , Vacinas Conjugadas/metabolismo , Streptococcus pneumoniae , Infecções Pneumocócicas/epidemiologia , Sorogrupo , beta-Lactamas , Testes de Sensibilidade Microbiana , Genômica , Recombinação Genética , Polissacarídeos/metabolismo
19.
Endocr Relat Cancer ; 30(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902083

RESUMO

Ataxia telangiectasia and Rad3-related protein (ATR) is a critical component of the DNA damage response and a potential target in the treatment of cancers. An ATR inhibitor, BAY 1895344, was evaluated for its use in differentiated thyroid cancer (DTC) therapy. BAY 1895344 inhibited cell viability in four DTC cell lines (TPC1, K1, FTC-133, and FTC-238) in a dose-dependent manner. BAY 1895344 treatment arrested DTC cells in the G2/M phase, increased caspase-3 activity, and caused apoptosis. BAY 1895344 in combination with either sorafenib or lenvatinib showed mainly synergistic effects in four DTC cell lines. The combination of BAY 1895344 with dabrafenib plus trametinib revealed synergistic effects in K1 cells that harbor BRAFV600E. BAY 1895344 monotherapy retarded the growth of K1 and FTC-133 tumors in xenograft models. The combinations of BAY 1895344 plus lenvatinib and BAY 1895344 with dabrafenib plus trametinib were more effective than any single therapy in a K1 xenograft model. No appreciable toxicity appeared in animals treated with either a single therapy or a combination treatment. Our findings provide the rationale for the development of clinical trials of BAY 1895344 in the treatment of DTC.


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Animais , Humanos , Neoplasias da Glândula Tireoide/patologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Sorafenibe/farmacologia , Adenocarcinoma/tratamento farmacológico , Proteínas Mutadas de Ataxia Telangiectasia
20.
Plants (Basel) ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836154

RESUMO

Banana (Musa acuminata, AAA group) is a typically respiratory climacteric fruit. Previously, genes encoding ACC oxidase, one of the key enzymes in ethylene biosynthesis, Mh-ACO1 and Mh-ACO2 in bananas were silenced individually using RNAi interference technology, and fruit ripening of transgenic bananas was postponed. Here, the differential expression of miRNAs and their targeted mRNAs were analyzed in the transcriptomes of fruits at the third ripening stage, peel color more green than yellow, from the untransformed and RNAi transgenic bananas. Five significantly differentially expressed miRNAs (mac-miR169a, mac-miR319c-3p, mac-miR171a, mac-miR156e-5p, and mac-miR164a-5p) were identified. The predicted miRNA target genes were mainly enriched in six KEGG pathways, including 'sulfur relay system', 'protein digestion and absorption', 'histidine metabolism', 'pathogenic E. coli infection', 'sulfur metabolism', and 'starch and sucrose metabolism'. After ethylene treatment, the expression of ACC oxidase silencing-associated miRNAs was down-regulated, and that of their target genes was up-regulated along with fruit ripening. The evolutionary clustering relationships of miRNA precursors among 12 gene families related to fruit ripening were analyzed. The corresponding expression patterns of mature bodies were mainly concentrated in flowers, fruits, and leaves. Our results indicated that ethylene biosynthesis is associated with miRNAs regulating the expression of sulfur metabolism-related genes in bananas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...