Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22283193

RESUMO

ObjectivesWe assessed the causal association of three COVID-19 phenotypes with insulin-like growth factor 1 (IGF-1), estrogen, testosterone, dehydroepiandrosterone (DHEA), thyroid-stimulating hormone (TSH), thyrotropin-releasing hormone (TRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH). MethodsWe used a bidirectional two-sample univariate and multivariable Mendelian randomization (MR) analysis to evaluate the direction, specificity, and causality of the association between CNS-regulated hormones and COVID-19 phenotypes. Genetic instruments for CNS-regulated hormones were selected from the largest publicly available genome-wide association studies in the European population. Summary-level data on COVID-19 severity, hospitalization, and susceptibility were obtained from the COVID-19 host genetic initiative. ResultsDHEA was associated with increased risks of very severe respiratory syndrome (OR=4.21, 95% CI: 1.41-12.59), consistent with the results in multivariate MR (OR=3.72, 95% CI: 1.20-11.51), and hospitalization (OR = 2.31, 95% CI: 1.13-4.72) in univariate MR. LH was associated with very severe respiratory syndrome (OR=0.83; 95% CI: 0.71-0.96) in univariate MR. Estrogen was negatively associated with very severe respiratory syndrome (OR=0.09, 95% CI: 0.02-0.51), hospitalization (OR=0.25, 95% CI: 0.08-0.78), and susceptibility (OR=0.50, 95% CI: 0.28-0.89) in multivariate MR. ConclusionsWe found strong evidence for the causal relationship of DHEA, LH, and estrogen with COVID-19 phenotypes.

2.
Acta Pharmaceutica Sinica B ; (6): 3966-3982, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-922453

RESUMO

Mitochondria as a signaling platform play crucial roles in deciding cell fate. Many classic anticancer agents are known to trigger cell death through induction of mitochondrial damage. Mitophagy, one selective autophagy, is the key mitochondrial quality control that effectively removes damaged mitochondria. However, the precise roles of mitophagy in tumorigenesis and anticancer agent treatment remain largely unclear. Here, we examined the functional implication of mitophagy in the anticancer properties of magnolol, a natural product isolated from herbal

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA