Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 269: 114270, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37308044

RESUMO

PURPOSE: To examine the possible role of impramine and agmatine through a mTOR signal pathway on rat ovary after maternal separation stress-induced depression. METHODS: Sprague Dawley neonatal female rats were divided into control, maternal separation (MS), MS+imipramine, and MS+agmatine groups. Rats were subjected to MS for 4 hours daily from postnatal day (PND) 2 to PND 21 and pups were exposed to social isolation (SI) on PND23 for 37 days for model establishment treated with imipramine (30 mg/kg; ip) or agmatine (40 mg/kg; ip) for 15 days. In order to examine behavioral changes rats were all subjected to locomotor activity and forced swimming tests (FST). Ovaries were isolated for morphological evaluation, follicle counting and mTOR signal pathway protein expression levels were detected. RESULTS: Increased number of primordial follicles and diminished ovarian reserve in the MS groups were detected. Imipramine treatment caused diminished ovarian reserve and atretic follicle; however, agmatine treatment provided the maintenance of ovarian follicular reserve after MS. mTOR signal pathway may have an important role during rat ovarian follicular development in model of MS. CONCLUSIONS: Our findings suggest that agmatine may help to protect ovarian reserve during follicular development by controlling cell growth.


Assuntos
Agmatina , Reserva Ovariana , Ratos , Animais , Feminino , Ratos Sprague-Dawley , Imipramina/farmacologia , Agmatina/farmacologia , Depressão/tratamento farmacológico , Depressão/etiologia , Privação Materna , Serina-Treonina Quinases TOR , Transdução de Sinais
2.
Front Endocrinol (Lausanne) ; 14: 1150017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152932

RESUMO

Cell-cell junctions form strong intercellular connections and mediate communication between blastomeres during preimplantation embryonic development and thus are crucial for cell integrity, polarity, cell fate specification and morphogenesis. Together with cell adhesion molecules and cytoskeletal elements, intercellular junctions orchestrate mechanotransduction, morphokinetics and signaling networks during the development of early embryos. This review focuses on the structure, organization, function and expressional pattern of the cell-cell junction complexes during early embryonic development. Understanding the importance of dynamic junction formation and maturation processes will shed light on the molecular mechanism behind developmental abnormalities of early embryos during the preimplantation period.


Assuntos
Junções Intercelulares , Mecanotransdução Celular , Animais , Feminino , Gravidez , Junções Intercelulares/metabolismo , Desenvolvimento Embrionário/fisiologia , Morfogênese , Transdução de Sinais/fisiologia , Mamíferos
3.
J Mol Histol ; 54(3): 217-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37162693

RESUMO

mTOR (mammalian target of Rapamycin) is an important signaling pathway involved in several crucial ovarian functions including folliculogenesis and oocyte maturation. The circadian rhythm regulates multiple physiological processes and PER2 is one of the core circadian rhythm components. mTOR is regulated by the circadian clock and in turn, the rhythmic mTOR activities strengthen the clock function. Our current study aims to investigate a possible interconnection between the circadian clock and the mTORC1 signaling pathway in folliculogenesis and oocyte maturation. Here we demonstrate that the circadian system regulates mTORC1 signaling via Per2 dependent mechanism in the mouse ovary. To investigate the effect of constant light on ovarian and oocyte morphology, animals were housed 12:12 h L:D group in standard lightening conditions and the 12:12 h L:L group in constant light for one week. Food intake and body weight changes were measured. Ovarian morphology, follicle counting, and oocyte aging were evaluated. Afterward, western blot for mTOR, p-mTOR, p70S6K, p-p70S6K, PER2, and Caspase-3 protein levels was performed. The study demonstrated that circadian rhythm disruption caused an alteration in their food intake and decrease in primordial follicle numbers and an increase in the number of atretic follicles. It caused an increase in oxidative stress and a decrease in ZP3 expression in oocytes. Decreased protein levels of mTOR, p-mTOR, p70S6K, and PER2 were shown. The results showed that the circadian clock regulates mTORC1 through PER2 dependent mechanism and that decreased mTORC1 activity can contribute to premature aging of mouse ovary. In conclusion, these results suggest that the circadian clock may control ovarian aging by regulating mTOR signaling pathway through Per2 expression.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Oócitos , Proteínas Circadianas Period , Animais , Feminino , Camundongos , Mamíferos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
Eur J Pharm Biopharm ; 187: 34-45, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37061099

RESUMO

Ulcerative colitis is an inflammatory condition with ulcerations throughout the colon. The existing remedies have some limitations such as drug inactivation, poor absorption, and adverse reactions. The present study aimed to design novel microsponge formulations to enhance remission of the dexamethasone (as a model pharmaceutical ingredient) in the colon. Microsponges were prepared by using the quasi-emulsion technique. The optimal formulation was selected by applying the design of experiments approach which used methylcellulose (MC) (0.75-2%, w/w), polyvinylalcohol (PVA)(0.5-1%, w/w), and tween 80 (TW80) (1.5-2.5%, w/w). The critical quality attributes were selected as particle size and entrapment efficiency. The particle size and encapsulation efficiency were found as 140.38 ± 9.2 µm and 77.96 ± 3.4 %. After the optimization; morphological, thermal, and physicochemical characterization studies were performed. Ultimately, the optimal formulation was investigated by using the acetic acid-induced ulcerative colitis model in rats. The physicochemical characterization studies confirmed that the formulation components were compatible with each other. The in vitro release mechanisms were fitted to First order kinetics at pH 1.2 (R2:0.9563), and Korsmeyer-Peppas kinetics at pH 4.5 (R2: 0.9877), and pH 6.8 (R2: 0.9706). The medicated microsponges exhibited remarkable recovery compared to the control group of the in vivo ulcerative colitis model (p < 0.05). It could be concluded that microsponges were evaluated as a promising alternative drug delivery system for the management of ulcerative colitis.


Assuntos
Colite Ulcerativa , Ratos , Animais , Colite Ulcerativa/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ácido Acético/uso terapêutico , Dexametasona
5.
Physiol Behav ; 266: 114204, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086829

RESUMO

Methylphenidate (MPH) is the first-line therapy for attention deficit hyperactivity disorder (ADHD) in children and adolescents. The aim of this study was to investigate the effects chronic MPH administration on reproductive parameters in both male and female pre-pubertal rats and reversibility of these effects. Sprague-Dawley rats were administered with 5 mg/kg MPH or saline orally from postnatal day (PND) 21 to PND60 and from PND21 to PND90. In addition, recovery groups from both sexes, in which MPH administration was stopped from PND60 to PND90 were included. Puberty onset, serum luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone and estradiol levels were determined. Histopathology of male and female reproductive organs was examined. Puberty onset was significantly early in the males (p<0.01), but late in females (p<0.05). In males, serum LH and FSH levels were similar. Testosterone levels tended to decrease in MPH-treated animals. Morphology of testes, epididymis and vas deferens was disrupted in MPH-treated animals, while it was improved in the recovery group. In females, estradiol levels decreased in MPH-treated group compared to controls, and elevated LH levels were detected in recovery group. Similar to the males, disruption in the reproductive organ histology was seen with morphological deterioration in basement membrane of the ovaries of MPH-treated groups. These adverse effects of MPH were recovered after drug cessation for 30 days. The present results demonstrate that MPH could affect the reproductive functions in both male and female rats. However, our findings also suggest that those effects are transient.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Ratos , Animais , Feminino , Masculino , Metilfenidato/farmacologia , Ratos Sprague-Dawley , Peso Corporal , Maturidade Sexual , Hormônio Luteinizante , Hormônio Foliculoestimulante , Testosterona , Genitália , Estradiol , Estimulantes do Sistema Nervoso Central/farmacologia
6.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 1009-1018, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36598515

RESUMO

Mammalian target of rapamycin (mTOR) is an important serine/threonine kinase that plays a critical role in several processes including cell cycle, protein synthesis, and energy metabolism. Due to its multiple roles and general dysregulation in cancer, the mTOR pathway is an important target in cancer therapy. However, studies on mTOR activity in seminoma are limited. Therefore, our aim was to investigate the expression of mTOR signaling pathway proteins in the TCam-2 cell line after rapamycin treatment. TCam-2 cells were treated with different concentrations of rapamycin (control (no rapamycin treatment), 4 nM, 20 nM, 100 nM, 500 nM, and 1000 nM rapamycin) for 48 h and 72 h. mTOR, p-mTOR, P70S6K, p-P70S6K, proliferating cell nuclear antigen (PCNA), and caspase-3 expression levels were analyzed by western blot. Apotosis and cell cycle were analyzed by flow cytometry. After 48 h of rapamycin administration, mTOR activity was significantly decreased at 1000 nM (p < 0.05). In addition, P70S6K acitivity significantly decreased in groups at all rapamycin concentrations (***p < 0.001, ****p < 0.0001). After 72 h of rapamycin administration, mTOR pathway activity were significantly decreased at 100, 500, and 1000 nM rapamycin-treated groups (p < 0.05). Moreover, P70S6K expression decreased in all treatment groups (****p < 0.0001). Caspase-3 expression were similar in all groups. While PCNA expression tended to decrease at 48 h in a dose-dependent manner, this decrease was not significant. We detected decreased PCNA expression at 1000 nM rapamycin at 72 h (p < 0.05). The rate of apoptosis increased especially at 1000 nM rapamycin at 72 h (***p < 0.001). On the other hand, according to the results of the cell cycle experiment, G1 phase arrest was detected at all rapamycin doses at 48 and 72 h (***p < 0.001). Our study indicated that 1000 nM rapamycin may inhibit TCam-2 seminoma cells growth by halting cell proliferation through inhibition of G1-S transition. Therefore, we believe that the findings obtained will contribute to the development of new treatment approaches for seminoma patients in the future and in the process of restoring testicular functions and preserving fertility.


Assuntos
Seminoma , Neoplasias Testiculares , Masculino , Humanos , Sirolimo/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Caspase 3/metabolismo , Transdução de Sinais , Seminoma/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Neoplasias Testiculares/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral
7.
Cell Tissue Res ; 386(3): 423-444, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34586506

RESUMO

First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.


Assuntos
Blastocisto/fisiologia , Via de Sinalização Hippo/genética , Animais , Diferenciação Celular , Feminino , Camundongos , Gravidez , Transdução de Sinais
8.
Reprod Biol ; 20(4): 555-567, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33191142

RESUMO

Expression levels of genes involved in the development of germ cells vary throughout the process from bipotential gonadal period to adult gonadal formation. In mice, developments of female and male reproductive system are regulated by germ cell-specific factors and hormones, and determinative days in this regulation are very important. c-Abl is a non-receptor tyrosine kinase with cellular functions including cell proliferation, growth and development. mTERT is involved in maintaining telomerase activity and proliferation of surviving cells. We suggested that c-Abl and mTERT might be important for the healthy development of prenatal and postnatal mouse ovary and testis. We aim to demonstrate localization and expressions of c-Abl and mTERT in crucial days of ovary and testis development in prenatal and postnatal period in mouse by immunofluorescence staining and qRT-PCR, respectively. The importance of c-Abl and mTERT expressions during the healthy gonadal development is indicated in the prenatal and postnatal gonadal development. Also, protein expression levels were detected by Western Blot in only postnatal ovary and testis. Determining the functions of the c-Abl and mTERT throughout the process will be important in terms of understanding the infertility cases in the female and male with future studies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ovário/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-abl/genética , Telomerase/genética , Testículo/crescimento & desenvolvimento , Animais , Feminino , Células da Granulosa/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovário/embriologia , Gravidez , Proteínas Proto-Oncogênicas c-abl/análise , RNA Mensageiro/análise , Telomerase/análise , Telomerase/química , Testículo/embriologia
9.
Reprod Biol ; 20(2): 115-126, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32147393

RESUMO

The development of primordial germ cells and gonads are determinants of reproductive health and fertility. Although the gonadal development process is similar for both genders, the gender-determining process and the mechanism of development of female and male gonads have different molecular mechanisms. Spermatogenesis and oogenesis are also included in this process for a healthy gonadal development. Many specific molecular signaling pathways play role in oogenesis and spermatogenesis and it is important to know at which stage these factors are effective, to understand the mechanism of a healthy gonadal development. With this review, we defined the importance of stage specific genes expressing during the events such as oogenesis and spermatogenesis with the prenatal and postnatal gonadal development. It will be important to know about the cellular signals involved in the control of the gonadal development.


Assuntos
Embrião de Mamíferos/fisiologia , Gônadas/embriologia , Animais , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Processos de Determinação Sexual
10.
J Recept Signal Transduct Res ; 40(4): 365-373, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32131672

RESUMO

Context: Oocyte and granulosa cells (GCs) have bidirectional communication and GCs play an important role in folliculogenesis and proliferation of GCs is very important for the development of ovulatory follicle. DNA double-strand breaks activate c-Abl protein tyrosine kinase and c-Abl has a functional role in repairement of DNA and control of telomere.Objective: In this study, we hypothesized that c-Abl has a regulative role on mTERT in mouse ovarian granulosa cells (GCs) and we aimed to detect c-Abl and mTERT interaction in mouse primary culture of GCs.Materials and methods: Mouse ovarian granulosa cell were cultured and siRNA-mediated knockdown approach was used to knockdown c-Abl expression.Results: We showed c-Abl and mTERT immunolocalization in vivo and in vitro mouse GCs. c-Abl and mTERT were constitutively expressed in mouse granulosa cells and c-Abl presented more intense expression in granulosa cells than mTERT expression. The interaction of the c-Abl-mTERT is supported by the exhibition that c-Abl siRNA knockdown cells show decreased mTERT expression. We also present an interaction between c-Abl and mTERT by immunoprecipitation. In addition, our results indicated that the down-regulation of c-Abl was also accompanied by reduced expression of proliferating cell nuclear antigen (PCNA) in GCs.Conclusions: We suggest that mTERT may associate with the c-Abl in mouse GCs and the interactions between c-Abl and mTERT suggest a role for c-Abl in the regulation of telomerase function and proliferation in mouse granulosa cells.


Assuntos
Genes abl/genética , Células da Granulosa/metabolismo , Proteínas Tirosina Quinases/genética , Telomerase/genética , Animais , Domínio Catalítico/genética , Proliferação de Células , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células da Granulosa/fisiologia , Camundongos , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Ovulação/genética , Mapas de Interação de Proteínas/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Telomerase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...