Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Nat Commun ; 14(1): 7203, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938236

RESUMO

The instability of the surface chemistry in transition metal oxide perovskites is the main factor hindering the long-term durability of oxygen electrodes in solid oxide electrochemical cells. The instability of surface chemistry is mainly due to the segregation of A-site dopants from the lattice to the surface. Here we report that cathodic potential can remarkably improve the stability in oxygen reduction reaction and electrochemical activity, by decomposing the near-surface region of the perovskite phase in a porous electrode made of La1-xSrxCo1-xFexO3 mixed with Sm0.2Ce0.8O1.9. Our approach combines X-ray photoelectron spectroscopy and secondary ion mass spectrometry for surface and sub-surface analysis. Formation of Ruddlesden-Popper phase is accompanied by suppression of the A-site dopant segregation, and exsolution of catalytically active Co particles onto the surface. These findings reveal the chemical and structural elements that maintain an active surface for oxygen reduction, and the cathodic potential is one way to generate these desirable chemistries.

2.
ACS Nano ; 17(13): 11994-12039, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37382380

RESUMO

Memristive technology has been rapidly emerging as a potential alternative to traditional CMOS technology, which is facing fundamental limitations in its development. Since oxide-based resistive switches were demonstrated as memristors in 2008, memristive devices have garnered significant attention due to their biomimetic memory properties, which promise to significantly improve power consumption in computing applications. Here, we provide a comprehensive overview of recent advances in memristive technology, including memristive devices, theory, algorithms, architectures, and systems. In addition, we discuss research directions for various applications of memristive technology including hardware accelerators for artificial intelligence, in-sensor computing, and probabilistic computing. Finally, we provide a forward-looking perspective on the future of memristive technology, outlining the challenges and opportunities for further research and innovation in this field. By providing an up-to-date overview of the state-of-the-art in memristive technology, this review aims to inform and inspire further research in this field.

3.
Phys Chem Chem Phys ; 25(8): 6380-6391, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779480

RESUMO

Quantifying the local distribution of charged defects in the solid state and charged ions in liquid solution near the oxide/liquid interface is key to understanding a range of important electrochemical processes, including oxygen reduction and evolution, corrosion and hydrogen evolution reactions. Based on a grand canonical approach relying on the electrochemical potential of individual charged species, a unified treatment of charged defects on the solid side and ions on the water side can be established. This approach is compatible with first-principles calculations where the formation free energy of individual charged species can be calculated and modulated by imposing certain electrochemical potential. Herein, we apply this framework to a system of monoclinic ZrO2(1̄11)/water interface. The structure, defect chemistry and dynamical behavior of the electric double layer and space charge layer are analyzed with different pH values, water chemistry and doping elements in zirconium oxide. The model predicts ZrO2 solubility in water and the point of zero charge consistent with the experimentally-measured values. We reveal the effect of dopant elements on the concentrations of oxygen and hydrogen species at the surface of the ZrO2 passive layer in contact with water, uncovering an intrinsic trade-off between oxygen diffusion and hydrogen pickup during the corrosion of zirconium alloys. The solid/water interface model established here serves as the basis for modeling reaction and transport kinetics under doping and water chemistry effects.

4.
J Am Chem Soc ; 145(3): 1714-1727, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36627834

RESUMO

Exsolution is a recent advancement for fabricating oxide-supported metal nanoparticle catalysts via phase precipitation out of a host oxide. A fundamental understanding and control of the exsolution kinetics are needed to engineer exsolved nanoparticles to obtain higher catalytic activity toward clean energy and fuel conversion. Since oxygen release via oxygen vacancy formation in the host oxide is behind oxide reduction and metal exsolution, we hypothesize that the kinetics of metal exsolution should depend on the kinetics of oxygen release, in addition to the kinetics of metal cation diffusion. Here, we probe the surface exsolution kinetics both experimentally and theoretically using thin-film perovskite SrTi0.65Fe0.35O3 (STF) as a model system. We quantitatively demonstrated that in this system the surface oxygen release governs the metal nanoparticle exsolution kinetics. As a result, by increasing the oxygen release rate in STF, either by reducing the sample thickness or by increasing the surface reactivity, one can effectively accelerate the Fe0 exsolution kinetics. Fast oxygen release kinetics in STF not only shortened the prereduction time prior to the exsolution onset, but also increased the total quantity of exsolved Fe0 over time, which agrees well with the predictions from our analytical kinetic modeling. The consistency between the results obtained from in situ experiments and analytical modeling provides a predictive capability for tailoring exsolution, and highlights the importance of engineering host oxide surface oxygen release kinetics in designing exsolved nanocatalysts.

5.
Adv Mater ; 35(37): e2205169, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36300807

RESUMO

Artificial neural networks based on crossbar arrays of analog programmable resistors can address the high energy challenge of conventional hardware in artificial intelligence applications. However, state-of-the-art two-terminal resistive switching devices based on conductive filament formation suffer from high variability and poor controllability. Electrochemical ionic synapses are three-terminal devices that operate by electrochemical and dynamic insertion/extraction of ions that control the electronic conductivity of a channel in a single solid-solution phase. They are promising candidates for programmable resistors in crossbar arrays because they have shown uniform and deterministic control of electronic conductivity based on ion doping, with very low energy consumption. Here, the desirable specifications of these programmable resistors are presented. Then, an overview of the current progress of devices based on Li+ , O2- , and H+ ions and material systems is provided. Achieving nanosecond speed, low operation voltage (≈1 V), low energy consumption, with complementary metal-oxide-semiconductor compatibility all simultaneously remains a challenge. Toward this goal, a physical model of the device is constructed to provide guidelines for the desired material properties to overcome the remaining challenges. Finally, an outlook is provided, including strategies to advance materials toward the desirable properties and the future opportunities for electrochemical ionic synapses.

6.
Nat Comput Sci ; 3(12): 1034-1044, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38177720

RESUMO

Understanding material surfaces and interfaces is vital in applications such as catalysis or electronics. By combining energies from electronic structure with statistical mechanics, ab initio simulations can, in principle, predict the structure of material surfaces as a function of thermodynamic variables. However, accurate energy simulations are prohibitive when coupled to the vast phase space that must be statistically sampled. Here we present a bi-faceted computational loop to predict surface phase diagrams of multicomponent materials that accelerates both the energy scoring and statistical sampling methods. Fast, scalable and data-efficient machine learning interatomic potentials are trained on high-throughput density-functional-theory calculations through closed-loop active learning. Markov chain Monte Carlo sampling in the semigrand canonical ensemble is enabled by using virtual surface sites. The predicted surfaces for GaN(0001), Si(111) and SrTiO3(001) are in agreement with past work and indicate that the proposed strategy can model complex material surfaces and discover previously unreported surface terminations.


Assuntos
Eletrônica , Aprendizado de Máquina , Catálise , Cadeias de Markov , Método de Monte Carlo
7.
J Am Chem Soc ; 144(48): 21926-21938, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36441525

RESUMO

Controlling the size of Au nanoparticles (NPs) and their interaction with the oxide support is important for their catalytic performance in chemical reactions, such as CO oxidation and water-gas shift. It is known that the oxygen vacancies at the surface of support oxides form strong chemical bonding with the Au NPs and inhibit their coarsening and deactivation. The resulting Au/oxygen vacancy interface also acts as an active site for oxidation reactions. Hence, small Au NPs are needed to increase the density of the Au/oxide interface. A dynamic way to control the size of the Au NPs on an oxide support is desirable but has been missing in the field. Here, we demonstrate an electrochemical method to control the size of the Au NPs by controlling the surface oxygen vacancy concentration of the support oxide. Oxides with different reducibilities, La0.8Ca0.2MnO3±Î´ and Pr0.1Ce0.9O2-δ, are used as model support oxides. By applying the electrochemical potential, we achieve a wide range of effective oxygen pressures, pO2 (10-37-1014 atm), in the support oxides. Applying the cathodic potential creates a high concentration of oxygen vacancies and forms finely distributed Au NPs with sizes of 7-13 nm at 700-770 °C in 10 min, while the anodic potential oxidizes the surface and increases the size of the Au NPs. The onset cathodic potential required to create small Au NPs depends strongly on the reducibility of the support oxide. The Au NPs did not undergo sintering even at 700-770 °C under the cathodic potential and also were stable in catalytically relevant conditions without potential.


Assuntos
Nanopartículas Metálicas , Óxidos , Ouro , Oxigênio
8.
ACS Appl Mater Interfaces ; 14(37): 42613-42627, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36084258

RESUMO

Identifying the structure of the Al2O3/Al interface is important for advancing its performance in a wide range of applications, including microelectronics, corrosion barriers, and superconducting qubits. However, beyond the study of a few select terminations of the interface using computational methods, and top-down, laterally averaged spectroscopic and microscopic analyses, the explicit structure of the interface and the initial stages of propagation of the interface into the metal are largely unresolved. In this study, we utilize ab initio grand canonical Monte Carlo to perform a physically motivated, unbiased exploration of the interfacial composition and configuration space. We find that at equilibrium, the interface is atomically sharp with aluminum vacancies and propagates in a layer-by-layer fashion, with aluminum excess in the oxide layer at the interfacial plane. Oxygen incorporation, aluminum vacancy formation, and aluminum vacancy annihilation are the building blocks of Al2O3 formation at the interface. The localized interfacial mid-gap states from under-coordinated aluminum atoms from the oxide and the immediate depletion of aluminum states near the Fermi level upon oxygen incorporation prevent oxygen dissolution ahead of the interface front and result in the layer-by-layer propagation of the interface. This is in sharp contrast to the ZrO2/Zr system, which forms interfacial sub-oxides, and also explains the favorable self-healing nature of the Al2O3/Al system. The occupied interfacial mid-gap states also increase the calculated n-type Schottky barrier heights. Additionally, we identify that interfacial aluminum core-level shifts linearly depend on the aluminum coordination number, whereas interfacial oxygen core-level shifts depend on long-range ordering at the interface. The detailed geometric and electronic insights into the interface structure and evolution expand our understanding of this fundamental interface and have important implications for the engineering and design of Al2O3/Al-based corrosion coatings with enhanced barrier properties, controllable transistor technologies, and noise-free superconducting qubits.

9.
Science ; 377(6605): 539-543, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35901152

RESUMO

Nanoscale ionic programmable resistors for analog deep learning are 1000 times smaller than biological cells, but it is not yet clear how much faster they can be relative to neurons and synapses. Scaling analyses of ionic transport and charge-transfer reaction rates point to operation in the nonlinear regime, where extreme electric fields are present within the solid electrolyte and its interfaces. In this work, we generated silicon-compatible nanoscale protonic programmable resistors with highly desirable characteristics under extreme electric fields. This operation regime enabled controlled shuttling and intercalation of protons in nanoseconds at room temperature in an energy-efficient manner. The devices showed symmetric, linear, and reversible modulation characteristics with many conductance states covering a 20× dynamic range. Thus, the space-time-energy performance of the all-solid-state artificial synapses can greatly exceed that of their biological counterparts.

10.
Nano Lett ; 22(13): 5401-5408, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771744

RESUMO

Exsolution synthesizes self-assembled metal nanoparticle catalysts via phase precipitation. An overlooked aspect in this method thus far is how exsolution affects the host oxide surface chemistry and structure. Such information is critical as the oxide itself can also contribute to the overall catalytic activity. Combining X-ray and electron probes, we investigated the surface transformation of thin-film SrTi0.65Fe0.35O3 during Fe0 exsolution. We found that exsolution generates a highly Fe-deficient near-surface layer of about 2 nm thick. Moreover, the originally single-crystalline oxide near-surface region became partially polycrystalline after exsolution. Such drastic transformations at the surface of the oxide are important because the exsolution-induced nonstoichiometry and grain boundaries can alter the oxide ion transport and oxygen exchange kinetics and, hence, the catalytic activity toward water splitting or hydrogen oxidation reactions. These findings highlight the need to consider the exsolved oxide surface, in addition to the metal nanoparticles, in designing the exsolved nanocatalysts.

11.
Turk J Pediatr ; 64(2): 322-331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611421

RESUMO

BACKGROUND: Monosymptomatic nocturnal enuresis (MNE) is defined as involuntary nighttime urination of children over five years of age without any congenital or acquired defect in the central nervous system. Many factors, mainly nocturnal polyuria, sleep disorders, decreased bladder capacity, and bladder dysfunctions play a role in the etiology of MNE. METHODS: Eighty-three children diagnosed with MNE were included in the study. Complete blood cell count, blood biochemistry, renin, and aldosterone levels of all children were obtained. Twenty-four-hour urine samples were collected separately daytime and nighttime and urinary electrolytes were evaluated. Also, 24-hour ambulatory blood pressure monitoring (ABPM) was performed for each patient. The results were evaluated by comparing both enuretic children vs. control group and enuretic children with polyuria vs. without polyuria. RESULTS: When we compared the enuretic children and the control group in terms of urinary electrolytes, the fractional excretion of sodium (FENa) and fractional excretion of potassium (FEK) values of the enuretic group were higher than the control. The evaluation of the 24-hour ABPM findings revealed no significant difference in terms of the mean arterial pressure (MAP) and diastolic blood pressure (DBP) during the daytime and nighttime measurements. The daytime systolic blood pressure (SBP), however, was significantly lower in the enuretic group. When enuretic children with and without polyuria and the control group were compared, the nighttime, FENa, FEK, as well as nighttime urinary excretion of calcium and protein were significantly higher in enuretic children with polyuria. No difference was detected on the MAP, SBP, or DBP values. CONCLUSIONS: In conclusion, the nighttime urinary solute excretion of enuretic children was found to be higher and this condition may especially be associated with pathogenesis of nighttime polyuria. In enuretic children, nighttime blood pressure changes were not influential in the etiopathogenesis in all patient groups and multiple mechanisms may play a role in the pathogenesis of enuresis.


Assuntos
Enurese Noturna , Pressão Sanguínea , Monitorização Ambulatorial da Pressão Arterial , Criança , Eletrólitos/urina , Humanos , Poliúria/diagnóstico , Poliúria/urina
12.
J Am Chem Soc ; 144(17): 7657-7666, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35471024

RESUMO

Nanoparticles decorated electrodes (NDEs) are useful in fuel cells, electrolyzers, water treatment, and chemical synthesis. Here, we show that by rapidly bringing a mixed ionic-electronic conductor outside its electrochemical stability window, one can achieve uniform dispersion of metallic nanoparticles inside its bulk and at the surface and improve its electrocatalytic performance when back under normal functional conditions. Surprisingly, this can happen under anodic as well as cathodic current/voltage shocks in an ABO3 perovskite oxide, La0.4Ca0.4Ti0.88Fe0.06Ni0.06O3-δ (LCTFN), across a wide range of H2/O2 gas environments at 800 °C. One possible mechanism for bulk Fe0/Ni0 precipitation under anodic shock condition is the incomplete oxygen oxidation (O2- → Oα-, 0 < α < 2), migration and escape of oxygen to interfaces, and "whiplash" transition-metal reduction due to low electronic conductivity. We show that both cathodic and anodic shocks can produce NDEs to enhance electrocatalytic performance, potentially improving the flexibility of this approach in practical devices.

13.
Nanoscale ; 14(3): 663-674, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34874392

RESUMO

The past several years have seen a resurgence in the popularity of metal exsolution as an approach to synthesize advanced materials proposed for novel catalytic, magnetic, optical, and electrochemical properties. Whereas most studies to-date have focused on surface exsolution (motivated by catalysis), we instead report on the diversity of nanostructures formed in La0.6Sr0.4FeO3 thin films during sub-surface or so-called 'bulk' exsolution, in addition to surface exsolution. Bulk exsolution is a promising approach to tuning the functionality of materials, yet there is little understanding of the nanostructures exsolved within the bulk and how they compare to those exsolved at gas-solid interfaces. This work combines atomic- and nano-scale imaging and spectroscopy techniques applied using a state-of-the-art aberration-corrected scanning transmission electron microscope (STEM). In doing so, we present a detailed atomic-resolution study of a range of Fe-rich and Fe-depleted nanostructures possible via exsolution, along with qualitative and quantitative chemical analysis of the exsolved nanostructures and oxide phases formed throughout the film. Local structural changes in the perovskite matrix, coinciding with nanostructure exsolution, are also characterized with atomic-resolution STEM imaging. Fe exsolution is shown to create local A-site rich domains of Ruddlesden-Popper phase, and some stages of this phase formation have been demonstrated in this work. In particular, phase boundaries are found to be the primary nucleation sites for bulk and surface exsolution, and the exsolved particles observed here tend to be ellipsoidal with shape factor of 1.4. We report a range of nanostructure types (core-shell, bulk core-shell, adjacent, and independent particles), revealing several possible avenues of future exploration aimed to understand the formation mechanism of each exsolution type and to develop their functionality. This work is thus relevant to materials scientists and engineers motivated to understand and utilize exsolution to synthesize materials with predictable nanostructures.

14.
Adv Sci (Weinh) ; 9(4): e2104476, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34894095

RESUMO

Polarization of ionic and electronic defects in response to high electric fields plays an essential role in determining properties of materials in applications such as memristive devices. However, isolating the polarization response of individual defects has been challenging for both models and measurements. Here the authors quantify the nonlinear dielectric response of neutral oxygen vacancies, comprised of strongly localized electrons at an oxygen vacancy site, in perovskite oxides of the form ABO3 . Their approach implements a computationally efficient local Hubbard U correction in density functional theory simulations. These calculations indicate that the electric dipole moment of this defect is correlated positively with the lattice volume, which they varied by elastic strain and by A-site cation species. In addition, the dipole of the neutral oxygen vacancy under electric field increases with increasing reducibility of the B-site cation. The predicted relationship among point defect polarization, mechanical strain, and transition metal chemistry provides insights for the properties of memristive materials and devices under high electric fields.

15.
Nat Commun ; 12(1): 4298, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262033

RESUMO

Single-phase multiferroic materials that allow the coexistence of ferroelectric and magnetic ordering above room temperature are highly desirable, motivating an ongoing search for mechanisms for unconventional ferroelectricity in magnetic oxides. Here, we report an antisite defect mechanism for room temperature ferroelectricity in epitaxial thin films of yttrium orthoferrite, YFeO3, a perovskite-structured canted antiferromagnet. A combination of piezoresponse force microscopy, atomically resolved elemental mapping with aberration corrected scanning transmission electron microscopy and density functional theory calculations reveals that the presence of YFe antisite defects facilitates a non-centrosymmetric distortion promoting ferroelectricity. This mechanism is predicted to work analogously for other rare earth orthoferrites, with a dependence of the polarization on the radius of the rare earth cation. Our work uncovers the distinctive role of antisite defects in providing a mechanism for ferroelectricity in a range of magnetic orthoferrites and further augments the functionality of this family of complex oxides for multiferroic applications.

16.
Nano Lett ; 21(14): 6111-6116, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34231360

RESUMO

Ion intercalation based programmable resistors have emerged as a potential next-generation technology for analog deep-learning applications. Proton, being the smallest ion, is a very promising candidate to enable devices with high modulation speed, low energy consumption, and enhanced endurance. In this work, we report on the first back-end CMOS-compatible nonvolatile protonic programmable resistor enabled by the integration of phosphosilicate glass (PSG) as the proton solid electrolyte layer. PSG is an outstanding solid electrolyte material that displays both excellent protonic conduction and electronic insulation characteristics. Moreover, it is a well-known material within conventional Si fabrication, which enables precise deposition control and scalability. Our scaled all-solid-state three-terminal devices show desirable modulation characteristics in terms of symmetry, retention, endurance, and energy efficiency. Protonic programmable resistors based on phosphosilicate glass, therefore, represent promising candidates to realize nanoscale analog crossbar processors for monolithic CMOS integration.


Assuntos
Aprendizado Profundo , Prótons , Eletrólitos , Eletrônica
17.
Nat Nanotechnol ; 16(9): 981-988, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34326528

RESUMO

Voltage control of magnetic order is desirable for spintronic device applications, but 180° magnetization switching is not straightforward because electric fields do not break time-reversal symmetry. Ferrimagnets are promising candidates for 180° switching owing to a multi-sublattice configuration with opposing magnetic moments of different magnitudes. In this study we used solid-state hydrogen gating to control the ferrimagnetic order in rare earth-transition metal thin films dynamically. Electric field-induced hydrogen loading/unloading in GdCo can shift the magnetic compensation temperature by more than 100 K, which enables control of the dominant magnetic sublattice. X-ray magnetic circular dichroism measurements and ab initio calculations indicate that the magnetization control originates from the weakening of antiferromagnetic exchange coupling that reduces the magnetization of Gd more than that of Co upon hydrogenation. We observed reversible, gate voltage-induced net magnetization switching and full 180° Néel vector reversal in the absence of external magnetic fields. Furthermore, we generated ferrimagnetic spin textures, such as chiral domain walls and skyrmions, in racetrack devices through hydrogen gating. With gating times as short as 50 µs and endurance of more than 10,000 cycles, our method provides a powerful means to tune ferrimagnetic spin textures and dynamics, with broad applicability in the rapidly emerging field of ferrimagnetic spintronics.

18.
J Phys Chem C Nanomater Interfaces ; 125(6): 3346-3354, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33815648

RESUMO

Stable composition and catalytic activity of surfaces are among the key requirements for materials employed in energy storage and conversion devices, such as solid oxide fuel cells (SOFCs). Perovskite oxides that serve as cathode in SOFCs suffer from segregation of the aliovalent substitutional cations and the formation of an inert, non-conductive phase at the surface. Here, we demonstrate that the surface of the state-of-the-art SOFC cathode material La0.8Sr0.2MnO3 (LSM) is stabilized against the segregation of Sr at high temperature by submonolayer coverages of Hf. The Hf is vapor-deposited onto the LSM thin film surface by e-beam evaporation. Using in situ near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), we analyze the surface composition of LSM thin films. Half the LSM surface was kept as-prepared, and half was Hf-modified, for a direct comparison of untreated and Hf-treated regions on the same sample. The formation of a binary SrOx surface species is quantified as descriptor for surface degradation. The onset of Sr segregation is observed at 450 °C on the bare LSM, followed by a substantial advance at 550 °C. Hf-treated regions of the same LSM surface exhibit significantly less Sr surface segregation at 450-550 °C. We interpret this stabilization imparted by Hf to arise from the suppression of the electrostatic attraction of Sr2+ cations to surface oxygen vacancies. Doping the surface layer with Hf, that has a higher affinity to oxygen, reduces this attraction by decreasing the surface oxygen vacancy concentration. In doing so, the use of physical vapor deposition highlights the direct role of the metal species in this system and excludes artifacts that could be introduced via chemical routes. The present work demonstrates this stabilizing effect of Hf on the surface of LSM, broadening the relevance of our prior findings on surface metal doping of other perovskite oxides.

19.
J Chem Phys ; 154(6): 064702, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33588549

RESUMO

Perovskite oxides degrade at elevated temperatures while precipitating dopant-rich particles on the surface. A knowledge-based improvement of surface stability requires a fundamental and quantitative understanding of the dopant precipitation mechanism on these materials. We propose that dopant precipitation is a consequence of the variation of dopant solubility between calcination and operating conditions in solid oxide fuel cells (SOFCs) and electrolyzer cells (SOECs). To study dopant precipitation, we use 20% (D = Ca, Sr, Ba)-doped LaMnO3+δ (LDM20) as a model system. We employ a defect model taking input from density functional theory calculations. The defect model considers the equilibration of LDM20 with a reservoir consisting of dopant oxide (DO), peroxide (DO2), and O2 in the gas phase. The equilibrated non-stoichiometry of the A-site and B-site as a function of temperature, T, and oxygen partial pressure, p(O2), reveals three regimes for LDM20: A-site deficient (oxidizing conditions), A-site rich (atmospheric conditions), and near-stoichiometric (reducing conditions). Assuming an initial A/B non-stoichiometry, we compute the dopant precipitation boundaries in a p-T phase diagram. Our model predicts precipitation both under reducing (DO) and under highly oxidizing conditions (DO2). We found precipitation under anodic, SOEC conditions to be promoted by large dopant size, while under cathodic, SOFC conditions precipitation is promoted by initial A-site excess. The main driving forces for precipitation are oxygen uptake by the condensed phase under oxidizing conditions and oxygen release assisted by B-site vacancies under reducing conditions. Possible strategies for mitigating dopant precipitation under in electrolytic and fuel cell conditions are discussed.

20.
ACS Appl Mater Interfaces ; 12(29): 32622-32632, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32551512

RESUMO

Increasing the capacity and kinetics of oxygen exchange in solid oxides is important to improve the performance of numerous energy-related materials, especially those for the solar-to-fuel technology. Dual-phase metal oxide composites of La0.65Sr0.35MnO3-x%CeO2, with x = 0, 5, 10, 20, 50, and 100, have been experimentally investigated for oxygen exchange and CO2 splitting via thermochemical redox reactions. The prepared metal oxide powders were tested in a temperature range from 1000 to 1400 °C under isothermal and two-step cycling conditions relevant for solar thermochemical fuel production. We reveal synergetic oxygen exchange of the dual-phase composite La0.65Sr0.35MnO3-CeO2 compared to its individual components. The enhanced oxygen exchange in the composite has a beneficial effect on the rate of oxygen release and the total CO produced by CO2 splitting, while it has an adverse effect on the maximum rate of CO evolution. Ex situ Raman and XRD analyses are used to shed light on the relative oxygen content during thermochemical cycling. Based on the relative oxygen content in both phases, we discuss possible mechanisms that can explain the observed behavior. Overall, the presented findings highlight the beneficial effects of dual-phase composites in enhancing the oxygen exchange capacity of redox materials for renewable fuel production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...