Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38517332

RESUMO

Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Neurônios Motores/patologia , Mutação , Doenças Neuroinflamatórias , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
Acta Neuropathol Commun ; 11(1): 204, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115109

RESUMO

Vascular risk factors such as chronic hypertension are well-established major modifiable factors for the development of cerebral small vessel disease (cSVD). In the present study, our focus was the investigation of cSVD-related phenotypic changes in microglia in human disease and in the spontaneously hypertensive stroke-prone rat (SHRSP) model of cSVD. Our examination of cortical microglia in human post-mortem cSVD cortical tissue revealed distinct morphological microglial features specific to cSVD. We identified enlarged somata, an increase in the territory occupied by thickened microglial processes, and an expansion in the number of vascular-associated microglia. In parallel, we characterized microglia in a rodent model of hypertensive cSVD along different durations of arterial hypertension, i.e., early chronic and late chronic hypertension. Microglial somata were already enlarged in early hypertension. In contrast, at late-stage chronic hypertension, they further exhibited elongated branches, thickened processes, and a reduced ramification index, mirroring the findings in human cSVD. An unbiased multidimensional flow cytometric analysis revealed phenotypic heterogeneity among microglia cells within the hippocampus and cortex. At early-stage hypertension, hippocampal microglia exhibited upregulated CD11b/c, P2Y12R, CD200R, and CD86 surface expression. Detailed analysis of cell subpopulations revealed a unique microglial subset expressing CD11b/c, CD163, and CD86 exclusively in early hypertension. Notably, even at early-stage hypertension, microglia displayed a higher association with cerebral blood vessels. We identified several profound clusters of microglia expressing distinct marker profiles at late chronic hypertensive states. In summary, our findings demonstrate a higher vulnerability of the hippocampus, stage-specific microglial signatures based on morphological features, and cell surface protein expression in response to chronic arterial hypertension. These results indicate the diversity within microglia sub-populations and implicate the subtle involvement of microglia in cSVD pathogenesis.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Hipertensão , Ratos , Humanos , Camundongos , Animais , Microglia/metabolismo , Hipertensão/complicações , Hipertensão/patologia , Ratos Endogâmicos SHR , Doenças de Pequenos Vasos Cerebrais/patologia , Fenótipo
4.
Mol Neurodegener ; 18(1): 24, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069623

RESUMO

BACKGROUND: Inflammaging represents an accepted concept where the immune system shifts to a low-grade chronic pro-inflammatory state without overt infection upon aging. In the CNS, inflammaging is mainly driven by glia cells and associated with neurodegenerative processes. White matter degeneration (WMD), a well-known process in the aging brain, manifests in myelin loss finally resulting in motor, sensory and cognitive impairments. Oligodendrocytes (OL) are responsible for homeostasis and maintenance of the myelin sheaths, which is a complex and highly energy demanding process sensitizing these cells to metabolic, oxidative and other forms of stress. Yet, the immediate impact of chronic inflammatory stress like inflammaging on OL homeostasis, myelin maintenance and WMD remains open. METHODS: To functionally analyze the role of IKK/NF-κB signaling in the regulation of myelin homeostasis and maintenance in the adult CNS, we established a conditional mouse model allowing NF-κB activation in mature myelinating oligodendrocytes. IKK2-CAPLP-CreERT2 mice were characterized by biochemical, immunohistochemical, ultrastructural and behavioral analyses. Transcriptome data from isolated, primary OLs and microglia cells were explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS: Chronic NF-κB activation in mature OLs leads to aggravated neuroinflammatory conditions phenocopying brain inflammaging. As a consequence, IKK2-CAPLP-CreERT2 mice showed specific neurological deficits and impaired motoric learning. Upon aging, persistent NF-κB signaling promotes WMD in these mice as ultrastructural analysis revealed myelination deficits in the corpus callosum accompanied by impaired myelin protein expression. RNA-Seq analysis of primary oligodendrocytes and microglia cells uncovers gene expression signatures associated with activated stress responses and increased post mitotic cellular senescence (PoMiCS) which was confirmed by elevated senescence-associated ß-galactosidase activity and SASP gene expression profile. We identified an elevated integrated stress response (ISR) characterized by phosphorylation of eIF2α as a relevant molecular mechanism which is able to affect translation of myelin proteins. CONCLUSIONS: Our findings demonstrate an essential role of IKK/NF-κB signaling in mature, post-mitotic OLs in regulating stress-induced senescence in these cells. Moreover, our study identifies PoMICS as an important driving force of age-dependent WMD as well as of traumatic brain injury induced myelin defects.


Assuntos
NF-kappa B , Substância Branca , Camundongos , Animais , NF-kappa B/metabolismo , Substância Branca/metabolismo , Oligodendroglia , Bainha de Mielina , Transdução de Sinais/fisiologia
5.
Acta Neuropathol ; 145(6): 773-791, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058170

RESUMO

Amyotrophic lateral sclerosis (ALS) is associated with impaired energy metabolism, including weight loss and decreased appetite which are negatively correlated with survival. Neural mechanisms underlying metabolic impairment in ALS remain unknown. ALS patients and presymptomatic gene carriers have early hypothalamic atrophy. The lateral hypothalamic area (LHA) controls metabolic homeostasis through the secretion of neuropeptides such as orexin/hypocretin and melanin-concentrating hormone (MCH). Here, we show loss of MCH-positive neurons in three mouse models of ALS based on SOD1 or FUS mutations. Supplementation with MCH (1.2 µg/d) through continuous intracerebroventricular delivery led to weight gain in male mutant Sod1G86R mice. MCH supplementation increased food intake, rescued expression of the key appetite-related neuropeptide AgRP (agouti-related protein) and modified respiratory exchange ratio, suggesting increased carbohydrate usage during the inactive phase. Importantly, we document pTDP-43 pathology and neurodegeneration in the LHA of sporadic ALS patients. Neuronal cell loss was associated with pTDP-43-positive inclusions and signs of neurodegeneration in MCH-positive neurons. These results suggest that hypothalamic MCH is lost in ALS and contributes to the metabolic changes, including weight loss and decreased appetite.


Assuntos
Esclerose Lateral Amiotrófica , Neuropeptídeos , Masculino , Camundongos , Animais , Superóxido Dismutase-1 , Neuropeptídeos/metabolismo , Orexinas , Ingestão de Alimentos , Redução de Peso
6.
Nat Commun ; 14(1): 342, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670122

RESUMO

Amyotrophic lateral sclerosis (ALS) has substantial heritability, in part shared with fronto-temporal dementia (FTD). We show that ALS heritability is enriched in splicing variants and in binding sites of 6 RNA-binding proteins including TDP-43 and FUS. A transcriptome wide association study (TWAS) identified 6 loci associated with ALS, including in NUP50 encoding for the nucleopore basket protein NUP50. Independently, rare variants in NUP50 were associated with ALS risk (P = 3.71.10-03; odds ratio = 3.29; 95%CI, 1.37 to 7.87) in a cohort of 9,390 ALS/FTD patients and 4,594 controls. Cells from one patient carrying a NUP50 frameshift mutation displayed a decreased level of NUP50. Loss of NUP50 leads to death of cultured neurons, and motor defects in Drosophila and zebrafish. Thus, our study identifies alterations in splicing in neurons as critical in ALS and provides genetic evidence linking nuclear pore defects to ALS.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Peixe-Zebra/metabolismo , Neurônios/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Mutação
7.
Neuroscience ; 506: 91-113, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332693

RESUMO

Here, we studied the neuroinflammation- and ischemia-related glial markers chitotriosidase 1 (CHIT1) and chitinase-3-like protein 1 (CHI3L1, alias YKL-40) in the human striate cortex and cerebellum at different time points after global hypoxic-ischemic brain injury (HIBI). Both regions differ considerably in their glial cell population but are supplied by the posterior circulation. CHIT1 and CHI3L1 expression was compared to changes in microglial (IBA1, CD68), astrocytic (GFAP, S100ß), and neuronal markers (H&E, neurofilament heavy chain, NfH; calretinin, CALR) using immunohistochemistry and multiple-label immunofluorescence. Initial striatal cortical and cerebellar Purkinje cell damage, detectable already 1/2 d after HIBI, led to delayed neuronal death, whereas loss of cerebellar NfH-positive stellate and CALR-positive granule cells was variable. During the first week post-HIBI, a transient reduction of IBA1-positive microglia was observed in both regions, and fragmented/clasmatodendritic cerebellar Bergmann glia appeared. In long-term survivors, both brain regions displayed high densities of activated IBA1-positive cells and CD68-positive macrophages, which showed CHIT1 co-localization in the striate cortex. Furthermore, enlarged GFAP- and S100ß-positive astroglia emerged in both regions around 9-10 d post-HIBI, i.e., along with clearance of dead neurons from the neuropil, although GFAP-/S100ß-positive gemistocytic astrocytes that co-expressed CHI3L1 were found only in the striate cortex. Thus, only GFAP-/S100ß-positive astrocytes in the striate cortex, but not cerebellar Bergmann glia, differentiated into CHI3L1-positive gemistocytes. CHIT1 was co-expressed almost entirely in macrophages in the striate cortex and not cerebellum of long-term survivors, thereby indicating that CHIT1 and CHI3L1 could be valuable biomarkers for monitoring the outcome of global HIBI.


Assuntos
Quitinases , Humanos , Córtex Visual Primário , Neuroglia , Hipóxia , Isquemia
8.
Biomedicines ; 10(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36009416

RESUMO

Cerebrospinal fluid (CSF) and serum biomarkers are critical for clinical decision making in neurological diseases. In cerebral small vessel disease (CSVD), white matter hyperintensities (WMH) are an important neuroimaging biomarker, but more blood-based biomarkers capturing different aspects of CSVD pathology are needed. In 42 sporadic CSVD patients, we prospectively analysed WMH on magnetic resonance imaging (MRI) and the biomarkers neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), chitinase3-like protein 1 (CHI3L1), Tau and Aß1-42 in CSF and NfL and GFAP in serum. GFAP and CHI3L1 expression was studied in post-mortem brain tissue in additional cases. CSVD cases with higher serum NfL and GFAP levels had a higher modified Rankin Scale (mRS) and NIHSS score and lower CSF Aß1-42 levels, whereas the CSF NfL and CHI3L1 levels were positively correlated with the WMH load. Moreover, the serum GFAP levels significantly correlated with the neurocognitive functions. Pathological analyses in CSVD revealed a high density of GFAP-immunoreactive fibrillary astrocytic processes in the periventricular white matter and clusters of CHI3L1-immunoreactive astrocytes in the basal ganglia and thalamus. Thus, besides NfL, serum GFAP is a highly promising fluid biomarker of sporadic CSVD, because it does not only correlate with the clinical severity but also correlates with the cognitive function in patients.

10.
Neurol Sci ; 43(10): 5807-5820, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35674996

RESUMO

Here, we review the morphological taxonomy of neurons proposed by Enrique Ramón-Moliner in the vertebrate central nervous system based on "dendroarchitectonics" and compare these findings with Santiago Ramón y Cajal's work. Ramón-Moliner distinguished three main groups of nerve cells situated on a spectrum of dendritic configuration in the mammalian central nervous system with decreasing degree of morphological specialization, i.e., idiodendritic, allodendritic, and isodendritic neurons. Leptodendritic neurons would be an even more primitive type, and lophodendritic nerve cells would develop into pyramidal neurons. Using two developmental lines (i.e., telencephalic and rhombencephalic trends), Ramón-Moliner reconstructed the probable course of events in the phylogenetic history that led to the dendroarchitectonic families. While an increasing morphological specialization is associated with the projected phylogenetic development as an abstract "whole," phylogenetically "primitive neurons" such as the reticular formation may be present in later phylogenetic stages, and vice versa, phylogenetical "new arrivals," such as the cortical pyramidal cell, may be found early in phylogeny. Thus, Ramón-Moliner adopted the notion of an in-parallel neuronal development during phylogeny and ontogeny. In contrast, Cajal argued earlier in favor of the idea that ontogeny recapitulates phylogeny, focusing on the pyramidal neuron. In ontogeny, the early developmental features show a higher degree of similarity than the comparison of their adult forms. These results corroborate the rejection of the interpretative framework of ontogeny as a simple, speedy repetition of the phylogeny. Understanding morphological findings with the change in their interpretation and the historic underpinnings provide a framework for refined scientific hypotheses.


Assuntos
Sistema Nervoso Central , Neurônios , Animais , História do Século XIX , História do Século XX , Humanos , Mamíferos , Neurônios/fisiologia , Filogenia , Espanha
11.
J Neural Transm (Vienna) ; 128(12): 1813-1833, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34618237

RESUMO

The emergence of new artistic activities or shifts in artistic style in patients with frontotemporal dementia (FTD) syndromes is well documented at or after disease onset. However, a closer look in the literature reveals emerging artistic creativity also before FTD onset, although the significance and underlying pathology of such creative endeavors remain elusive. Here, we systematically review relevant studies and report an additional FTD case to elaborate on artistic activities that developed years before disease manifestation by paying particular attention to the sequence of events in individual patients' biography and clinical history. We further discuss the FTD patient's creative activities in the context of their life events, other initial or "premorbid" dementia symptoms or risk factors described in the literature such as mental illness and mild behavioral impairment (MBI), as well as changes in neuronal systems (i.e., neuroimaging and neuropathology). In addition to our FTD patient, we identified five published cases with an FTD syndrome, including three with FTD, one with primary progressive aphasia (PPA), and one with the behavioral variant of PPA (bvPPA). Premorbid novel creativity emerged across different domains (visual, musical, writing), with the FTD diagnosis ensuing artistic productivity by a median of 8 years. Data on late-life and pre-dementia life events were available in four cases. The late creative phase in our case was accompanied by personality changes, accentuation of personality traits, and cessation of painting activities occurred with the onset of memory complaints. Thus, premorbid personality changes in FTD patients can be associated with de novo creative activity. Stressful life events may also contribute to the burgeoning of creativity. Moreover, primary neocortical areas that are largely spared by pathology at early FTD stages may facilitate the engagement in artistic activities, offering a window of opportunity for art therapy and other therapeutic interventions during the MBI stage or even earlier.


Assuntos
Demência Frontotemporal , Criatividade , Humanos , Neuroimagem , Síndrome
12.
Cells ; 10(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685649

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease that is accompanied by pronounced neuroinflammatory responses mainly characterized by marked microgliosis and astrogliosis. However, it remains open as to how different aspects of astrocytic and microglial activation affect disease progression. Previously, we found that microglia expansion in the spinal cord, initiated by IKK2/NF-κB activation in astrocytes, exhibits stage-dependent beneficial effects on the progression of amyotrophic lateral sclerosis. Here, we investigated the impact of NF-κB-initiated neuroinflammation on AD pathogenesis using the APP23 mouse model of AD in combination with conditional activation of IKK2/NF-κB signaling in astrocytes. We show that NF-κB activation in astrocytes triggers a distinct neuroinflammatory response characterized by striking astrogliosis as well as prominent microglial reactivity. Immunohistochemistry and Congo red staining revealed an overall reduction in the size and number of amyloid plaques in the cerebral cortex and hippocampus. Interestingly, isolated primary astrocytes and microglia cells exhibit specific marker gene profiles which, in the case of microglia, point to an enhanced plaque clearance capacity. In contrast, direct IKK2/NF-κB activation in microglia results in a pro-inflammatory polarization program. Our findings suggest that IKK2/NF-κB signaling in astrocytes may activate paracrine mechanisms acting on microglia function but also on APP processing in neurons.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Polaridade Celular , Quinase I-kappa B/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inflamação/patologia , Camundongos Transgênicos , Microglia/metabolismo , Modelos Biológicos , Fagocitose , Fenótipo , Placa Amiloide/genética , Placa Amiloide/patologia , Proteólise , Transdução de Sinais
13.
J Neural Transm (Vienna) ; 128(3): 279-293, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33709181

RESUMO

Numerous papers report on connections between creative work and dementing illness, particularly in frontotemporal dementia (FTD), which may combine with motor neuron disease (FTD-MND). However, the emergence of FTD(-MND) patients' de novo artistic activities is rarely reported and underappreciated. Therefore, the present review summarizes relevant case studies' outcomes, capturing creativity's multifaceted nature. Here, we systematically searched for case reports by paying particular attention to the chronological development of individual patients' clinical symptoms, signs, and life events. We synoptically compared the various art domains to the pattern of brain atrophy, the clinical and pathological FTD subtypes. 22 FTD(-MND) patients were identified with creativity occurring either at the same time (41%) or starting after the disease onset (59%); the median lag between the first manifestation of disease and the beginning of creativity was two years. In another five patients, novel artistic activity was developed by a median of 8 years before the start of dementia symptoms. Artistic activity usually evolved over time with a peak in performance, followed by a decline that was further hampered by physical impairment during disease progression. Early on, the themes and objects depicted were often concrete and realistic, but they could become more abstract or symbolic at later stages. Emergent artistic processes may occur early on in the disease process. They appear to be a communication of inner life and may also reflect an attempt of compensation or "self-healing". The relative preservation of primary neocortical areas such as the visual, auditory, or motor cortex may enable the development of artistic activity in the face of degeneration of association cortical areas and subcortical, deeper central nervous system structures. It is crucial to understand the differential loss of function and an individual's creative abilities to implement caregiver-guided, personalized therapeutic strategies such as art therapy.


Assuntos
Demência Frontotemporal , Doença dos Neurônios Motores , Atrofia , Córtex Cerebral , Criatividade , Humanos
14.
J Neurol Neurosurg Psychiatry ; 92(4): 349-356, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33380492

RESUMO

OBJECTIVE: Synaptic loss plays a major role in Alzheimer's disease (AD). However so far no neurochemical marker for synaptic loss has been introduced into clinical routine. By mass spectrometry beta-synuclein was established as a candidate marker. We now aimed to set up a novel ELISA for beta-synuclein for evaluation of its potential as a diagnostic and predictive marker for AD. METHODS: We analysed in total 393 patients from four specialised centres. The diagnostic groups comprised: AD (n=151), behavioural variant frontotemporal dementia (bvFTD, n=18), Parkinson syndrome (n=46), Creutzfeldt-Jakob disease (CJD, n=23), amyotrophic lateral sclerosis (ALS, n=29), disease control (n=66) and 60 non-neurodegenerative control patients. Results were compared with core AD biomarkers (total tau, phospho-tau and amyloid-ß peptide 1-42). Additionally, coexistence of beta-synuclein with vesicular glutamate transporter 1 (VGLUT1) was determined and beta-synuclein levels were quantified in brain homogenates. RESULTS: Beta-synuclein levels quantified with the newly established ELISA correlated strongly with antibody-free quantitative mass spectrometry data (r=0.92 (95% CI: 0.89 to 0.94), p<0.0001). Cerebrospinal fluid (CSF) beta-synuclein levels were increased in AD-mild cognitive impairment (p<0.0001), AD dementia (p<0.0001) and CJD (p<0.0001), but not in bvFTD, Parkinson syndrome or ALS. Furthermore, beta-synuclein was localised in VGLUT1-positive glutamatergic synapses, and its expression was significantly reduced in brain tissue from patients with AD (p<0.01). CONCLUSION: We successfully established a sensitive and robust ELISA for the measurement of brain-enriched beta-synuclein, which we could show is localised in glutamatergic synapses. We confirmed previous, mass spectrometry-based observations of increased beta-synuclein levels in CSF of patients with AD and CJD supporting its potential use as a marker of synaptic degeneration.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Doença de Parkinson , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Humanos , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/diagnóstico , Fragmentos de Peptídeos/líquido cefalorraquidiano , beta-Sinucleína , Proteínas tau/líquido cefalorraquidiano
15.
Brain Commun ; 2(2): fcaa133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005894

RESUMO

Loss-of-function mutations in TANK-binding kinase 1 cause genetic amyotrophic lateral sclerosis and frontotemporal dementia. Consistent with incomplete penetrance in humans, haploinsufficiency of TANK-binding kinase 1 did not cause motor symptoms in mice up to 7 months of age in a previous study. Ageing is the strongest risk factor for neurodegenerative diseases. Hypothesizing that age-dependent processes together with haploinsufficiency of TANK-binding kinase 1 could create a double hit situation that may trigger neurodegeneration, we examined mice with hemizygous deletion of Tbk1 (Tbk1 +/- mice) and wild-type siblings up to 22 months. Compared to 4-month old mice, aged, 22-month old mice showed glial activation, deposition of motoneuronal p62 aggregates, muscular denervation and profound transcriptomic alterations in a set of 800 immune-related genes upon ageing. However, we did not observe differences regarding these measures between aged Tbk1 +/- and wild-type siblings. High age did also not precipitate TAR DNA-binding protein 43 aggregation, neurodegeneration or a neurological phenotype in Tbk1+/ - mice. In young Tbk1+/ - mice, however, we found the CNS immune gene expression pattern shifted towards the age-dependent immune system dysregulation observed in old mice. Conclusively, ageing is not sufficient to precipitate an amyotrophic lateral sclerosis or frontotemporal dementia phenotype or spinal or cortical neurodegeneration in a model of Tbk1 haploinsufficiency. We hypothesize that the consequences of Tbk1 haploinsufficiency may be highly context-dependent and require a specific synergistic stress stimulus to be uncovered.

16.
Life Sci Alliance ; 3(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32900826

RESUMO

Blood-spinal cord barrier (BSCB) disruption is thought to contribute to motoneuron (MN) loss in amyotrophic lateral sclerosis (ALS). It is currently unclear whether impairment of the BSCB is the cause or consequence of MN dysfunction and whether its restoration may be directly beneficial. We revealed that SOD1 G93A , FUS ΔNLS , TDP43 G298S , and Tbk1 +/- ALS mouse models commonly shared alterations in the BSCB, unrelated to motoneuron loss. We exploit PSAM/PSEM chemogenetics in SOD1 G93A mice to demonstrate that the BSCB is rescued by increased MN firing, whereas inactivation worsens it. Moreover, we use DREADD chemogenetics, alone or in multiplexed form, to show that activation of Gi signaling in astrocytes restores BSCB integrity, independently of MN firing, with no effect on MN disease markers and dissociating them from BSCB disruption. We show that astrocytic levels of the BSCB stabilizers Wnt7a and Wnt5a are decreased in SOD1 G93A mice and strongly enhanced by Gi signaling, although further decreased by MN inactivation. Thus, we demonstrate that BSCB impairment follows MN dysfunction in ALS pathogenesis but can be reversed by Gi-induced expression of astrocytic Wnt5a/7a.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/sangue , Animais , Astrócitos/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/fisiologia , Medula Espinal/metabolismo , Coluna Vertebral/irrigação sanguínea , Coluna Vertebral/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo
17.
Acta Neuropathol Commun ; 8(1): 33, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169123

RESUMO

The identification of cerebral microinfarctions with magnetic resonance imaging (MRI) and histological methods remains challenging in aging and dementia. Here, we matched pathological changes in the microvasculature of cortical cerebral microinfarcts to MRI signals using single 100 µm-thick histological sections scanned with ultra-high-resolution 11.7 T MRI. Histologically, microinfarcts were located in superficial or deep cortical layers or transcortically, compatible with the pattern of layer-specific arteriolar blood supply of the cerebral cortex. Contrary to acute microinfarcts, at chronic stages the core region of microinfarcts showed pallor with extracellular accumulation of lipofuscin and depletion of neurons, a dense meshwork of collagen 4-positive microvessels with numerous string vessels, CD68-positive macrophages and glial fibrillary acidic protein (GFAP)-positive astrocytes. In MRI scans, cortical microinfarcts at chronic stages, called chronic cortical microinfarcts here, gave hypointense signals in T1-weighted and hyperintense signals in T2-weighted images when thinning of the tissue and cavitation and/or prominent iron accumulation were present. Iron accumulation in chronic microinfarcts, histologically verified with Prussian blue staining, also produced strong hypointense T2*-weighted signals. In summary, the microinfarct core was occupied by a dense microvascular meshwork with string vessels, which was invaded by macrophages and astroglia and contained various degrees of iron accumulation. While postmortem ultra-high-resolution single-section imaging improved MRI-histological matching and the structural characterization of chronic cortical cerebral microinfarcts, miniscule microinfarcts without thinning or iron accumulation could not be detected with certainty in the MRI scans. Moreover, string vessels at the infarct margin indicate disturbances in the microcirculation in and around microinfarcts, which might be exploitable in the diagnostics of cortical cerebral microinfarcts with MRI in vivo.


Assuntos
Astrócitos/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/patologia , Macrófagos/patologia , Microvasos/patologia , Doença Aguda , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Astrócitos/metabolismo , Autopsia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Doença Crônica , Colágeno Tipo IV/metabolismo , Demência/diagnóstico por imagem , Demência/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Microvasos/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia
18.
Pharmacol Biochem Behav ; 188: 172835, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805289

RESUMO

Patients with anxiety disorders and posttraumatic stress disorder (PTSD) exhibit exaggerated fear responses and noradrenergic dysregulation. Fear-related responses to α2-adrenergic challenge were therefore studied in DxH C3H/HeJ-like recombinant inbred (C3HLRI) mice, which are a DBA/2J-congenic strain selectively bred for a high fear-sensitized startle (H-FSS). C3HLRI mice showed an enhanced acoustic startle response and immobility in the forced swim test compared to DBA/2J controls. The α2-adrenoceptor antagonist yohimbine (Yoh; 5.0 mg/kg) induced an anxiogenic and the α2-adrenoceptor agonist clonidine (Clon; 0.1 mg/kg) an anxiolytic effect in the open field (OF) in C3HLRI but not DBA/2J mice. In auditory fear-conditioning, Yoh (5.0 mg/kg)-treated C3HLRI mice showed higher freezing during fear recall and extinction learning than DBA/2J mice, and a higher ceiling for the Yoh-induced deficit in fear extinction. No strain differences were observed in exploration-related anxiety/spatial learning or the Clon-induced (0.1 mg/kg) corticosterone surge. A global analysis of the behavioral profile of the two mouse strains based on observed and expected numbers of significant behavioral outcomes indicated that C3HLRI mice showed significantly more often fear- and stress-related PTSD-like behaviors than DBA/2J controls. The analysis of the robustness of significant outcomes based on false discovery rate (FDR) thresholds confirmed significant differences for the strain-Yoh-interactions in the OF center and periphery, the Yoh-induced general extinction deficit, strain differences in conditioned fear levels, and at the dose of 5.0 mg/kg for the Yoh-induced ceiling in freezing levels among others. The current findings are consistent with previous observations showing alterations in the central noradrenergic system of C3HLRI mice (Browne et al., 2014, Stress 17:471-83). Based on their behavioral profile and response to α2-adrenergic stimulation, C3HLRI mice are a valuable genetic model for studying adrenergic mechanisms of anxiety disorders and potentially also of PTSD.


Assuntos
Estimulação Acústica/métodos , Antagonistas de Receptores Adrenérgicos alfa 2/toxicidade , Medo/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Reflexo de Sobressalto/fisiologia , Estimulação Acústica/efeitos adversos , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Medo/psicologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos DBA , Reflexo de Sobressalto/efeitos dos fármacos , Especificidade da Espécie , Ioimbina/toxicidade
19.
J Neurosurg ; 134(1): 223-234, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860806

RESUMO

OBJECTIVE: Acute subdural hematoma (ASDH) is a leading entity in brain injury. Rodent models mostly lack standard intensive care, while large animal models frequently are only short term. Therefore, the authors developed a long-term, resuscitated porcine model of ASDH-induced brain injury and report their findings. METHODS: Anesthetized, mechanically ventilated, and instrumented pigs with human-like coagulation underwent subdural injection of 20 mL of autologous blood and subsequent observation for 54 hours. Continuous bilateral multimodal brain monitoring (intracranial pressure [ICP], cerebral perfusion pressure [CPP], partial pressure of oxygen in brain tissue [PbtO2], and brain temperature) was combined with intermittent neurological assessment (veterinary modified Glasgow Coma Scale [MGCS]), microdialysis, and measurement of plasma protein S100ß, GFAP, neuron-specific enolase [NSE], nitrite+nitrate, and isoprostanes. Fluid resuscitation and continuous intravenous norepinephrine were targeted to maintain CPP at pre-ASDH levels. Immediately postmortem, the brains were taken for macroscopic and histological evaluation, immunohistochemical analysis for nitrotyrosine formation, albumin extravasation, NADPH oxidase 2 (NOX2) and GFAP expression, and quantification of tissue mitochondrial respiration. RESULTS: Nine of 11 pigs survived the complete observation period. While ICP significantly increased after ASDH induction, CPP, PbtO2, and the MGCS score remained unaffected. Blood S100ß levels significantly fell over time, whereas GFAP, NSE, nitrite+nitrate, and isoprostane concentrations were unaltered. Immunohistochemistry showed nitrotyrosine formation, albumin extravasation, NOX2 expression, fibrillary astrogliosis, and microglial activation. CONCLUSIONS: The authors describe a clinically relevant, long-term, resuscitated porcine model of ASDH-induced brain injury. Despite the morphological injury, maintaining CPP and PbtO2 prevented serious neurological dysfunction. This model is suitable for studying therapeutic interventions during hemorrhage-induced acute brain injury with standard brain-targeted intensive care.

20.
J Neuropathol Exp Neurol ; 78(11): 1022-1048, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31631219

RESUMO

The amygdala has long been implicated in the pathophysiology of human temporal lobe epilepsy (TLE). The different nuclei of this complex structure are interconnected and share reciprocal connections with the hippocampus and other brain structures, partly via the entorhinal cortex. Expression of GABAA receptor subunits α1, α2, α3, α5, ß2, ß2/3, and γ2 was evaluated by immunohistochemistry in amygdala specimens and the entorhinal cortex of 12 TLE patients and 12 autopsy controls. A substantial decrease in the expression of α1, α2, α3, and ß2/3 subunits was found in TLE cases, accompanied by an increase of γ2 subunit expression in many nuclei. In the entorhinal cortex, the expression of all GABAA receptor subunits was decreased except for the α1 subunit, which was increased on cellular somata. The overall reduction in α subunit expression may lead to decreased sensitivity to GABA and its ligands and compromise phasic inhibition, whereas upregulation of the γ2 subunit might influence clustering and kinetics of receptors and impair tonic inhibition. The description of these alterations in the human amygdala is important for the understanding of network changes in TLE as well as the development of subunit-specific therapeutic agents for the treatment of this disease.


Assuntos
Tonsila do Cerebelo/metabolismo , Córtex Entorrinal/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Receptores de GABA-A/metabolismo , Adulto , Tonsila do Cerebelo/patologia , Córtex Entorrinal/patologia , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inibição Neural , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...