Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood ; 142(1): 23-32, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-36928087

RESUMO

WHIM syndrome is an autosomal dominant immunodeficiency disorder caused by gain-of-function mutations in chemokine receptor CXCR4 that promote severe panleukopenia because of retention of mature leukocytes in the bone marrow (BM). We previously reported that Cxcr4-haploinsufficient (Cxcr4+/o) hematopoietic stem cells (HSCs) have a strong selective advantage for durable hematopoietic reconstitution over wild-type (Cxcr4+/+) and WHIM (Cxcr4+/w) HSCs and that a patient with WHIM was spontaneously cured by chromothriptic deletion of the disease allele in an HSC, suggesting that WHIM allele inactivation through gene editing may be a safe genetic cure strategy for the disease. We have developed a 2-step preclinical protocol of autologous hematopoietic stem and progenitor cell (HSPC) transplantation to achieve this goal. First, 1 copy of Cxcr4 in HSPCs was inactivated in vitro by CRISPR/Cas9 editing with a single guide RNA (sgRNA) that does not discriminate between Cxcr4+/w and Cxcr4+/+ alleles. Then, through in vivo natural selection, WHIM allele-inactivated cells were enriched over wild-type allele-inactivated cells. The WHIM allele-inactivated HSCs retained long-term pluripotency and selective hematopoietic reconstitution advantages. To our knowledge, this is the first example of gene therapy for an autosomal dominant gain-of-function disease using a disease allele inactivation strategy in place of the less efficient disease allele repair approach.


Assuntos
Síndromes de Imunodeficiência , Verrugas , Camundongos , Animais , Alelos , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Verrugas/genética , Verrugas/terapia , Terapia Genética , Receptores CXCR4/genética
3.
JCI Insight ; 4(24)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31687976

RESUMO

Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome immunodeficiency is caused by autosomal dominant gain-of-function mutations in chemokine receptor CXCR4. Patient WHIM-09 was spontaneously cured by chromothriptic deletion of 1 copy of 164 genes, including the CXCR4WHIM allele, presumably in a single hematopoietic stem cell (HSC) that repopulated HSCs and the myeloid lineage. Testing the specific contribution of CXCR4 hemizygosity to her cure, we previously demonstrated enhanced engraftment of Cxcr4+/o HSCs after transplantation in WHIM (Cxcr4+/w) model mice, but the potency was not quantitated. We now report graded-dose competitive transplantation experiments using lethally irradiated Cxcr4+/+ recipients in which mixed BM cells containing approximately 5 Cxcr4+/o HSCs and a 100-fold excess of Cxcr4+/w HSCs achieved durable 50% Cxcr4+/o myeloid and B cell chimerism in blood and approximately 20% Cxcr4+/o HSC chimerism in BM. In Cxcr4+/o/Cxcr4+/w parabiotic mice, we observed 80%-100% Cxcr4+/o myeloid and lymphoid chimerism in the blood and 15% Cxcr4+/o HSC chimerism in BM from the Cxcr4+/w parabiont, which was durable after separation from the Cxcr4+/o parabiont. Thus, CXCR4 haploinsufficiency likely significantly contributed to the selective repopulation of HSCs and the myeloid lineage from a single chromothriptic HSC in WHIM-09. Moreover, the results suggest that WHIM allele silencing of patient HSCs is a viable gene therapy strategy.


Assuntos
Haploinsuficiência , Transplante de Células-Tronco Hematopoéticas , Leucopenia/terapia , Doenças da Imunodeficiência Primária/terapia , Receptores CXCR4/genética , Verrugas/terapia , Animais , Cromotripsia , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função , Terapia Genética/métodos , Humanos , Leucopenia/genética , Masculino , Camundongos , Doenças da Imunodeficiência Primária/complicações , Doenças da Imunodeficiência Primária/genética , Quimeras de Transplante , Verrugas/complicações , Verrugas/genética
4.
J Clin Invest ; 128(8): 3312-3318, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29715199

RESUMO

For gene therapy of gain-of-function autosomal dominant diseases, either correcting or deleting the disease allele is potentially curative. To test whether there may be an advantage of one approach over the other for WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome - a primary immunodeficiency disorder caused by gain-of-function autosomal dominant mutations in chemokine receptor CXCR4 - we performed competitive transplantation experiments using both lethally irradiated WT (Cxcr4+/+) and unconditioned WHIM (Cxcr4+/w) recipient mice. In both models, hematopoietic reconstitution was markedly superior using BM cells from donors hemizygous for Cxcr4 (Cxcr4+/o) compared with BM cells from Cxcr4+/+ donors. Remarkably, only approximately 6% Cxcr4+/o hematopoietic stem cell (HSC) chimerism after transplantation in unconditioned Cxcr4+/w recipient BM supported more than 70% long-term donor myeloid chimerism in blood and corrected myeloid cell deficiency in blood. Donor Cxcr4+/o HSCs differentiated normally and did not undergo exhaustion as late as 465 days after transplantation. Thus, disease allele deletion resulting in Cxcr4 haploinsufficiency was superior to disease allele repair in a mouse model of gene therapy for WHIM syndrome, allowing correction of leukopenia without recipient conditioning.


Assuntos
Transplante de Medula Óssea , Haploinsuficiência , Síndromes de Imunodeficiência , Leucopenia , Receptores CXCR4 , Quimeras de Transplante , Verrugas , Aloenxertos , Animais , Modelos Animais de Doenças , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Síndromes de Imunodeficiência/patologia , Síndromes de Imunodeficiência/terapia , Leucopenia/genética , Leucopenia/metabolismo , Leucopenia/patologia , Leucopenia/terapia , Camundongos , Camundongos Mutantes , Doenças da Imunodeficiência Primária , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Quimeras de Transplante/genética , Quimeras de Transplante/metabolismo , Verrugas/genética , Verrugas/metabolismo , Verrugas/patologia , Verrugas/terapia
5.
Expert Opin Orphan Drugs ; 5(10): 813-825, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057173

RESUMO

21 INTRODUCTION: WHIM syndrome is a rare combined primary immunodeficiency disorder caused by autosomal dominant gain-of-function mutations in the chemokine receptor CXCR4. It is the only Mendelian condition known to be caused by mutation of a chemokine or chemokine receptor. As such, it provides a scientific opportunity to understand chemokine-dependent immunoregulation in humans and a medical opportunity to develop mechanism-based treatment and cure strategies. 22 AREAS COVERED: This review covers the clinical features, genetics, immunopathogenesis and clinical management of WHIM syndrome. Clinical trials of targeted therapeutic agents and potential cure strategies are also included. 23 EXPERT OPINION: WHIM syndrome may be particularly amenable to mechanism-based therapeutics for three reasons: 1) CXCR4 has been validated as the molecular target in the disease by Mendelian genetics; 2) the biochemical abnormality is excessive CXCR4 signaling; and 3) antagonists selective for CXCR4 have been developed. Plerixafor is FDA-approved for hematopoietic stem cell (HSC) mobilization and has shown preliminary safety and efficacy in phase I clinical trials in WHIM syndrome. Gene editing may represent a viable cure strategy, since chromothriptic deletion of the disease allele in HSCs resulted in clinical cure of a patient and because CXCR4 haploinsufficiency enhances engraftment of transplanted HSCs in mice.

6.
Cell ; 160(4): 686-699, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25662009

RESUMO

Chromothripsis is a catastrophic cellular event recently described in cancer in which chromosomes undergo massive deletion and rearrangement. Here, we report a case in which chromothripsis spontaneously cured a patient with WHIM syndrome, an autosomal dominant combined immunodeficiency disease caused by gain-of-function mutation of the chemokine receptor CXCR4. In this patient, deletion of the disease allele, CXCR4(R334X), as well as 163 other genes from one copy of chromosome 2 occurred in a hematopoietic stem cell (HSC) that repopulated the myeloid but not the lymphoid lineage. In competitive mouse bone marrow (BM) transplantation experiments, Cxcr4 haploinsufficiency was sufficient to confer a strong long-term engraftment advantage of donor BM over BM from either wild-type or WHIM syndrome model mice, suggesting a potential mechanism for the patient's cure. Our findings suggest that partial inactivation of CXCR4 may have general utility as a strategy to promote HSC engraftment in transplantation.


Assuntos
Instabilidade Cromossômica , Síndromes de Imunodeficiência/genética , Verrugas/genética , Animais , Cromossomos Humanos , Modelos Animais de Doenças , Haploinsuficiência , Células-Tronco Hematopoéticas/metabolismo , Humanos , Linfócitos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mosaicismo , Mutação , Células Mieloides/metabolismo , Doenças da Imunodeficiência Primária , Receptores CXCR4/genética , Remissão Espontânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...