Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(18): 5436-5443, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656103

RESUMO

The ultrahigh surface area of two-dimensional materials can drive multimodal coupling between optical, electrical, and mechanical properties that leads to emergent dynamical responses not possible in three-dimensional systems. We observed that optical excitation of the WS2 monolayer above the exciton energy creates symmetrically patterned mechanical protrusions which can be controlled by laser intensity and wavelength. This observed photostrictive behavior is attributed to lattice expansion due to the formation of polarons, which are charge carriers dressed by lattice vibrations. Scanning Kelvin probe force microscopy measurements and density functional theory calculations reveal unconventional charge transport properties such as the spatially and optical intensity-dependent conversion in the WS2 monolayer from apparent n- to p-type and the subsequent formation of effective p-n junctions at the boundaries between regions with different defect densities. The strong opto-electrical-mechanical coupling in the WS2 monolayer reveals previously unexplored properties, which can lead to new applications in optically driven ultrathin microactuators.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123150, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487289

RESUMO

We developed a method for the early on-site detection of strawberry anthracnose using a portable Raman system with multivariate statistical analysis algorithms. By using molecular markers based on Raman spectra, the proposed method can detect anthracnose in strawberry stems 3 days after exposure to Colletotrichum gloeosporioides. A fiber-optic probe was applied for the portable Raman system, and the acquisition time was 10 s. We found that the molecular markers were closely related to the following subjects: i) an increase in amide III and fatty acids of C. gloeosporioides invading strawberry stems (Raman bands at 1180-1310 cm-1) and ii) a decrease in metabolites in strawberry plants, such as phenolic compounds and terpenoids (Raman bands at 760, 800, and 1523 cm-1). We also found that the increased fluorescence background caused by various chromophores within the invading C. gloeosporioides could serve as a marker. A two-dimensional cluster plot obtained by principal component analysis (PCA) showed that the three groups (control, fungal infection, and pathogen) were distinguishable. The linear discriminant analysis (LDA)-based prediction algorithm could identify C. gloeosporioides infection with a posterior probability of over 40%, even when no symptoms were visible on the inoculated strawberry plants.


Assuntos
Fragaria , Humanos , Fragaria/microbiologia , Análise Espectral Raman , Doenças das Plantas/microbiologia , Biomarcadores , Sorogrupo
3.
Nanoscale Adv ; 4(17): 3585-3591, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36134344

RESUMO

A new design for light-emitting diodes (LEDs) with on-chip photocatalysts is presented for purification applications. An array of disk-shaped TiO2, with a diameter of several hundred nanometers, combined with SiO2 pedestals was fabricated directly on the surface of an InGaN-based near-ultraviolet (UV) LED using a dry etching process. The high refractive-index contrast at the boundary and the circular shape can effectively confine the near-UV light generated from the LED through multiple internal reflections inside the TiO2 nanodisks. Such a feature results in the enhancement of light absorption by the photocatalytic TiO2. The degradation of the organic dye malachite green was monitored as a model photocatalytic reaction. The proposed structure of LEDs with TiO2/SiO2 nanodisk/pedestal array exhibited a photocatalytic activity that was three times higher than the activity of LEDs with a TiO2 planar layer. The integration of photocatalytic materials with near-UV LEDs in a single system is promising for various purification applications, such as sterilization and disinfection.

4.
Molecules ; 25(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560497

RESUMO

The aggregation of zinc oxide nanoparticles leads to an increased absorbance in the ultraviolet-visible region by an induced light scattering effect. Herein, we demonstrate the inhibition of photoconversion activity in ZnO-graphene core-shell quantum dots (QD) (ZGQDs) agglomerated by 4-aminophenol (4-AP) used as a linker. The ZnO-graphene quantum dots (QD) aggregates (ZGAs) were synthesized using a facile solvothermal process. The ZGAs revealed an increased absorbance in the wavelengths between 350 and 750 nm as compared with the ZGQDs. Against expectation, the calculated average photoluminescence lifetime of ZGAs was 7.37 ns, which was 4.65 ns longer than that of ZGQDs and was mainly due to the high contribution of a slow (τ2, τ3) component by trapped carriers in the functional groups of graphene shells and 4-AP. The photoelectrochemical (PEC) cells and photodetectors (PDs) were fabricated to investigate the influence of ZGAs on the photoconversion activity. The photocurrent density of PEC cells with ZGAs was obtained as 0.04 mA/cm2 at 0.6 V, which was approximately 3.25 times lower than that of the ZGQDs. The rate constant value of the photodegradation value of rhodamine B was also decreased by around 1.4 times. Furthermore, the photoresponsivity of the PDs with ZGAs (1.54 µA·mW-1) was about 2.5 times as low as that of the PDs with ZGQDs (3.85 µA·mW-1). Consequently, it suggests that the device performances could be degraded by the inhibition phenomenon of the photoconversion activity in the ZGAs due to an increase of trap sites.


Assuntos
Aminofenóis/química , Técnicas Eletroquímicas , Fotólise , Pontos Quânticos/química , Rodaminas/química , Óxido de Zinco/química
5.
ACS Appl Mater Interfaces ; 11(47): 44458-44465, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31718128

RESUMO

Plasmonic metal nanostructures with nanogaps have attracted great interest owing to their controllable optical properties and intense electromagnetic fields that can be useful for a variety of applications, but precise and reliable control of nanogaps in three-dimensional nanostructures remains a great challenge. Here, we report the control of nanojunctions of hollow porous gold nanoshell (HPAuNS) structures by a facile oxygen plasma-etching process and the influence of changes in nanocrevices of the interparticle junction on the optical and sensing characteristics of HPAuNSs. We demonstrate a high tunability of the localized surface plasmon resonance (LSPR) peaks and surface-enhanced Raman scattering (SERS) detection of rhodamine 6G (R6G) using HPAuNS structures with different nanojunctions by varying the degree of gold sintering. As the neck region of the nanojunction is further sintered, the main LSPR peak shifts from 785 to 1350 nm with broadening because the charge transfer plasmon mode becomes more dominant than the dipolar plasmon mode, resulting from the increase of conductance at the interparticle junctions. In addition, it is demonstrated that an increase in the sharpness of the nanojunction neck can enhance the SERS enhancement factor of the HPAuNS by up to 4.8-fold. This enhancement can be ascribed to the more intense local electromagnetic fields at the sharper nanocrevices of interparticle junctions. The delicate change of nanojunction structures in HPAuNSs can significantly affect their optical spectrum and electromagnetic field intensity, which are critical for their practical use in a SERS-based analytical sensor as well as multiple-wavelength compatible applications.

6.
Nanotechnology ; 30(41): 415301, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31300618

RESUMO

The light to be trapped inside light-emitting diodes (LEDs) greatly affects the luminous efficiency and device lifetime. Abrupt difference in refractive index between the sapphire substrate and GaN-based LEDs causes light trapping by total internal reflection, however, its optical loss has been taken for granted. In this study, we demonstrate that nanoporous GaN can be used as a refractive-index-matching layer to enhance the light transmittance at the sapphire-GaN interface in InGaN/GaN flip-chip light-emitting diodes (FCLEDs). The porosity and the refractive index of the nanoporous GaN layer are controlled by electrochemical etching of n-type GaN layer. The optical output power of FCLEDs with the nanoporous GaN layer grown on flat and patterned sapphire substrates is increased by 355% and 65% at an injection current of 20 mA, respectively, compared with that of an FCLED without the nanoporous GaN layer. The remarkable enhancement of optical output is mostly attributed to the nanoporous GaN layer which drastically increases the light extraction efficiency by decreasing the reflection of light at the sapphire-GaN interface.

7.
ACS Appl Mater Interfaces ; 11(6): 6363-6373, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30663309

RESUMO

We demonstrated the effects of monolayer graphene and hexagonal boron nitride (h-BN) on the stability and detection performance of two types of substrates in surface-enhanced Raman scattering (SERS): a two-dimensional (2D) monolayer/Ag nanoparticle (NP) substrate and a Au NP/2D monolayer/Ag NP substrate. Graphene and h-BN, which have different electrical and chemical properties, were introduced in close contact with the metal NPs and had distinctly different effects on the plasmonic near-field interactions between metal NPs in the subnanometer-scale gap and on the electron transport behavior. A quantitative comparison was possible due to reproducible SERS signals across the entire substrates prepared by simple and inexpensive fabrication methods. The hybrid platform, an insulating h-BN monolayer covering the Ag NP substrate, ensured the long-term oxidative stability for over 80 days, which was superior to the stability achieved using conducting graphene. Additionally, a sandwich structure using an h-BN monolayer exhibited excellent SERS sensitivity with a detection limit for rhodamine 6G as low as 10-12 M; to the best of our knowledge, this is the best SERS detection limit achieved using monolayer h-BN as a gap-control material. In this study, we suggest an efficient strategy for hybridizing the desired 2D layers with metal nanostructures for SERS applications, where the substrate stability and electromagnetic field enhancement are particularly crucial for the various applications that utilize metal/2D hybrid structures.

8.
Nanoscale ; 10(29): 13867-13874, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29882577

RESUMO

Hybrid organic-Red-Green-Blue (RGB) color quantum dots were incorporated into consolidated p(polymer)-i(RGB quantum dots)-n(small molecules) junction structures to fabricate a single active layer for a light emitting diode device for white electroluminescence. The semiconductor RGB quantum dots, as an intrinsic material, were electrostatically bonded between functional groups of the p-type polymer organic material core surface and the n-type small molecular organic material shell surface. The ZnCdSe/ZnS and CdSe/ZnS quantum dots distributed uniformly and isotropically surrounding the polymer core which in turn was surrounded by small molecular organic materials. In the present study, we have identified the mechanisms of chemical synthesis and interactions of the p-i-n junction nanocell structure through modeling studies by DFT calculations. We have also investigated optical, structural and electrical properties along with the carrier transport mechanism of the light emitting diodes which have a single active layer of consolidated p-i-n junction nanocells for white electroluminescence.

9.
Nanoscale ; 10(28): 13356-13367, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29785443

RESUMO

The photoluminescence quantum yield (PLQY) and charge carrier mobility of organic-inorganic perovskite QDs were enhanced by the optimization of crystallinity and surface passivation as well as solid-state ligand exchange. The crystallinity of perovskite QDs was determined by the Effective solvent field (Esol) of various solvents for precipitation. The solvent with high Esol could more quickly countervail the localized field generated by the polar solvent, and it causes fast crystallization of the dissolved precursor, which results in poor crystallinity. The post-ligand adding process (PLAP) and post-ligand exchange process (PLEP) increase the PLQY of perovskite QDs by reducing non-radiative recombination and the density of surface defect states through surface passivation. Particularly, the post ligand exchange process (PLEP) in the solid-state improved the charge carrier mobility of perovskite QDs in addition to the PLQY enhancement. The ligand exchange with short alkyl chain length ligands could improve the packing density of perovskite QDs in films by reducing the inter-particle distance between perovskite QDs. The maximum hole mobility of 6.2 × 10-3 cm2 V-1 s-1, one order higher than that of pristine QDs without the PLEP, is obtained at perovskite QDs with hexyl ligands. By using PLEP treatment, compared to the pristine device, a 2.5 times higher current efficiency in perovskite QD-LEDs was achieved due to the improved charge carrier mobility and PLQY.

10.
ACS Appl Mater Interfaces ; 8(20): 12822-9, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27160866

RESUMO

The highly efficient CH3NH3PbI3 perovskite solar cell (PeSC) is simply achieved by employing a blended electron-transport layer (ETL) consisting of PC61BM and P(NDI2OD-T2). The high molecular weight of P(NDI2OD-T2) allows for a thinned ETL with a uniform morphology that optimizes the PC61BM ETL more effectively. As a result of this enhancement, the power conversion efficiency of a PC61BM:P(NDI2OD-T2)-based PeSC is 25% greater than that of the conventional PC61BM based-PeSC; additionally, the incorporation of P(NDI2OD-T2) into PC61BM attenuates the dependence of the PeSC on the ETL-processing conditions regarding its performance. It is revealed that, in addition to the desirable n-type semiconducting characteristics of PC61BM:P(NDI2OD-T2)-including a higher electron-mobility and a more-effective electron selectivity of a blended ETL for an efficient electron extraction-the superior performance of a PC61BM:P(NDI2OD-T2) device is the result of a thinned and uniformly covered ETL on the perovskite layer.

11.
J Hazard Mater ; 307: 137-44, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26780697

RESUMO

A simple, receptor-free and regeneratable Hg(2+) sensor, which utilizes localized surface plasmon resonance (LSPR) shifts of a gold nanorod (GNR), has been developed. Precipitation induced by coordination of Hg(2+) to citrate alters the local refractive index (RI) around the GNR surface on glass slide, promoting a red-shift in its LSPR absorption peak. This phenomenon is used to design a sensor that enables quantitative detection of Hg(2+) in the 1nM to 1mM concentration range with good linearity (0.9507 correlation coefficient) and limit of detection (LOD) is reached to 0.38nM. A high selectivity of this sensor for Hg(2+) is demonstrated by the specific LSPR red-shift of 27.67nm promoted by Hg(2+) in comparison to those caused by other metal ions. In addition, the reusability of the new sensor chip is shown by its successful reuse eight-times following successive washing/precipitation steps. Lastly, the sensor displays excellent recoveries in spiking test with real water samples, such as tap water, lake and river. The simple combination of precipitation of Hg(2+)-citrate complex and the LSPR red-shift has led to the design of a novel sensing strategy for Hg(2+) detection.

12.
Small ; 12(2): 161-8, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26573888

RESUMO

Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are demonstrated by combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. This versatile surface structure can efficiently reduce the total internal reflection and add functions, such as superhydrophobicity and high oleophobicity, to achieve an antifouling effect for VLEDs.

13.
Opt Express ; 24(5): 5366-5375, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092360

RESUMO

We report spectroscopic characterization of Fe:ZnSe quantum dots (for 2% of Zn/Fe molar ratio) fabricated by microemulsion hydrothermal synthesis. Mid-IR photoluminescence of the 5E↔5T2 transition of Fe2+ ions over 3.5-4.5 µm spectral range was observed in Fe:ZnSe quantum dot samples and kinetics of luminescence have been characterized at temperatures of 30-300 K under direct (2.788 µm) mid-IR excitation and indirect (0.355 µm) photoionization excitation. The radiative lifetime (τrad) was estimated from these measurements to be 48 µs while lifetime at room temperature was measured to be 440 ns. This agrees closely with the behavior of bulk material.

14.
ACS Nano ; 9(11): 10941-9, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26435403

RESUMO

Over the past few years the performance of colloidal quantum dot-light-emitting diode (QLED) has been progressively improved. However, most of QLED work has been fulfilled in the form of monochromatic device, while full-color-enabling white QLED still remains nearly unexplored. Using red, green, and blue quantum dots (QDs), herein, we fabricate bichromatic and trichromatic QLEDs through sequential solution-processed deposition of poly(9-vinlycarbazole) (PVK) hole transport layer, two or three types of QDs-mixed multilayer, and ZnO nanoparticle electron transport layer. The relative electroluminescent (EL) spectral ratios of constituent QDs in the above multicolored devices are found to inevitably vary with applied bias, leading to the common observation of an increasing contribution of a higher-band gap QD EL over low-band gap one at a higher voltage. The white EL from a trichromatic device is resolved into its primary colors through combining with color filters, producing an exceptional color gamut of 126% relative to National Television Systems Committee (NTSC) color space that a state-of-the-art full-color organic LED counterpart cannot attain. Our trichromatic white QLED also displays the record-high EL performance such as the peak values of 23,352 cd/m(2) in luminance, 21.8 cd/A in current efficiency, and 10.9% in external quantum efficiency.

15.
Nanotechnology ; 26(38): 385204, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26335045

RESUMO

We report on the characteristics of localized surface plasmon (LSP)-enhanced near-ultraviolet light-emitting diodes (NUV-LEDs) fabricated by using colloidal silver (Ag) nanoparticles (NPs). Colloidal Ag NPs were deposited on the 20 nm thick p-GaN spacer layer using a spray process. The optical output power of NUV-LEDs with colloidal Ag NPs was increased by 48.7% at 20 mA compared with NUV-LEDs without colloidal Ag NPs. The enhancement was attributed to increased internal quantum efficiency caused by the resonance coupling between excitons in the multiple quantum wells and the LSPs in the Ag NPs.

16.
J Nanosci Nanotechnol ; 15(11): 8684-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26726575

RESUMO

This work is focused on spectroscopically characterizing kinetic properties of concentric quantum-ring complexes of GaAs quantum dots. Quantum-ring (or double-ring) GaAs quantum dots, embedded in an Al0.3Ga0.7As barrier layer, were grown by a droplet epitaxy method during molecular beam epitaxy on a GaAs (001) substrate. Emission peaks of photoluminescence spectra with different excitation power, were measured as 702 nm at 0.17 mW and 690 nm at 400 mW, were blue-shifted as the excitation power increased. In addition, excitation laser power dependence of time-resolved photoluminescence of double-ring GaAs quantum dots at 10 K under 400 nm excitation wavelength was performed, revealing that photoluminescence lifetime slowly decreased in comparison to that of single disc-like quantum dots as excitation power increased, implying that carrier transfer between inner ring and outer ring could slow down the decay process. The luminescence lifetime at 10 K increased from 245 to 409 ps in the range from 0.17 to 400 mW of excitation power.

17.
J Nanosci Nanotechnol ; 13(3): 1798-801, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23755594

RESUMO

We developed a instrument consisting of an ultraviolet (UV) near-field scanning optical microscope (NSOM) combined with time-correlated single photon counting, which allows efficient observation of temporal dynamics of near-field photoluminescence (PL) down to the sub-wavelength scale. The developed time-resolved UV NSOM system showed a spatial resolution of 110 nm and a temporal resolution of 130 ps in the optical signal. The proposed microscope system was successfully demonstrated by characterizing the near-field PL lifetime of InGaN/GaN multiple quantum wells.

18.
Opt Express ; 21(3): 3138-44, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481772

RESUMO

We demonstrate localized surface plasmon (LSP)-enhanced near-ultraviolet light-emitting diodes (NUV-LEDs) using silver (Ag) and platinum (Pt) nanoparticles (NPs). The optical output power of NUV-LEDs with metal NPs is higher by 20.1% for NUV-LEDs with Ag NPs and 57.9% for NUV-LEDs with Pt NPs at 20 mA than that of NUV-LEDs without metal NPs. The time-resolved photoluminescence (TR-PL) spectra shows that the decay times of NUV-LEDs with Ag and Pt NPs are faster than that of NUV-LEDs without metal NPs. The TR-PL and absorbance spectra of metal NPs indicate that the spontaneous emission rate is increased by resonance coupling between excitons in the multiple quantum wells and LSPs in the metal NPs.


Assuntos
Gálio/química , Índio/química , Iluminação/instrumentação , Nanopartículas Metálicas/química , Platina/química , Prata/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Semicondutores , Raios Ultravioleta
19.
Rev Sci Instrum ; 83(9): 096104, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020432

RESUMO

We developed an automatic laser-to-optical-fiber coupling (ALOC) system that is based on the difference in the Raman scattering signals of the core and cladding of the optical fiber. This system can be easily applied to all fields of fiber optics since it can perform automatic optical coupling within a few seconds regardless of the core size or the condition of the output end of the optical fiber. The coupling time for a commercial single-mode fiber for a wavelength of 632.8 nm (core diameter: 9 µm, cladding diameter: 125 µm) is ~1.5 s. The ALOC system was successfully applied to single-mode-fiber Raman endoscopy for the measurement of the Raman spectrum of carbon nanotubes.

20.
J Nanosci Nanotechnol ; 11(8): 7185-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103153

RESUMO

We have investigated the carrier dynamics and activation energy of CdxZn(1-x)Te/ZnTe quantum dots (QDs) on GaAs and Si substrates. The carrier dynamics of QDs on GaAs and Si substrates is studied using time-resolved photoluminescence (PL) measurements, revealing shorter exciton lifetimes of QDs on Si substrate. In particular, the activation energy of electrons confined in QDs on the GaAs substrate, as obtained from temperature-dependent PL spectra, is higher than that of electrons confined in QDs on the Si substrate. Both results confirm that defects and dislocations in QDs on the Si substrate provide nonradiative channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...