Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 1066103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523749

RESUMO

Bone defect repair is a complicated clinical problem, particularly when the defect is relatively large and the bone is unable to repair itself. Magnesium and its alloys have been introduced as versatile biomaterials to repair bone defects because of their excellent biocompatibility, osteoconductivity, bone-mimicking biomechanical features, and non-toxic and biodegradable properties. Therefore, magnesium alloys have become a popular research topic in the field of implants to treat critical bone defects. This review explores the popular Mg alloy research topics in the field of bone defects. Bibliometric analyses demonstrate that the degradation control and mechanical properties of Mg alloys are the main research focus for the treatment of bone defects. Furthermore, the additive manufacturing (AM) of Mg alloys is a promising approach for treating bone defects using implants with customized structures and functions. This work reviews the state of research on AM-Mg alloys and the current challenges in the field, mainly from the two aspects of controlling the degradation rate and the fabrication of excellent mechanical properties. First, the advantages, current progress, and challenges of the AM of Mg alloys for further application are discussed. The main mechanisms that lead to the rapid degradation of AM-Mg are then highlighted. Next, the typical methods and processing parameters of laser powder bed fusion fabrication on the degradation characteristics of Mg alloys are reviewed. The following section discusses how the above factors affect the mechanical properties of AM-Mg and the recent research progress. Finally, the current status of research on AM-Mg for bone defects is summarized, and some research directions for AM-Mg to drive the application of clinical orthopedic implants are suggested.

2.
Bioact Mater ; 16: 301-319, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35415288

RESUMO

Laser powder bed fusion (L-PBF) of magnesium (Mg) alloy porous scaffolds is expected to solve the dual challenges from customized structures and biodegradable functions required for repairing bone defects. However, one of the key technical difficulties lies in the poor L-PBF process performance of Mg, contributed by the high susceptibility to oxidation, vaporization, thermal expansion, and powder attachment etc. This work investigated the influence of L-PBF energy input and scanning strategy on the formation quality of porous scaffolds by using WE43 powder, and characterized the microstructure, mechanical properties, biocompatibility, biodegradation and osteogenic effect of the as-built WE43 porous scaffolds. With the customized energy input and scanning strategy, the relative density of struts reached over 99.5%, and the geometrical error between the designed and the fabricated porosity declined to below 10%. Massive secondary phases including intermetallic precipitates and oxides were observed. The compressive strength (4.37-23.49 MPa) and elastic modulus (154.40-873.02 MPa) were comparable to those of cancellous bone. Good biocompatibility was observed by in vitro cell viability and in vivo implantation. The biodegradation of as-built porous scaffolds promoted the osteogenic effect, but the structural integrity devastated after 12 h by the immersion tests in Hank's solution and after 4 weeks by the implantation in rabbits' femur, indicating an excessively rapid degradation rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...