Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 139: 112657, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024749

RESUMO

Long-term exposure to ultraviolet radiation may cause photoaging of skin tissues. Coreopsis tinctoria Nutt. riches a variety of flavonoids with strong antioxidant activities. In the present study, the main antioxidant flavonoid was isolated from C. tinctoria and identified as okanin by Mass spectrum and Nuclear Magnetic Resonance Spectroscopy. Okanin was found to effectively reduce the malondialdehyde content, increase various intracellular antioxidant enzyme activities, relieve epidermal hyperplasia and dermal damage caused by UVB irradiation, and increase the collagen fibers' content in the dorsal skin tissue of mice. Immunohistochemical analysis showed that okanin effectively counteracted the photoaging effect of UVB-induced by down-regulating IL-1, IL-6, TNF-α, and COX-2, and up-regulating COL-1, COL-3, and HYP expression. In addition, okanin can inhibit skin photoaging by regulating TNF-ß/Smad2-3, MAPK, P13K/AKT, and NF-κB signaling pathways. In particular, the three key markers of photoaging, MMP (MMP-1/-3/-9), were down-regulated and five collagen synthesis genes (COL1A1, COL3A1, COL5A2, COL6A1, and COL7A1) were up-regulated, underlines the direct anti-photoaging mechanism of okanin in preventing collagen degradation and promoting collagen synthesis. The current investigation provides new insights into the great potential of okanin in alleviating skin photoaging and lays theoretical references for the development ofanti-photoaging products.

2.
Foods ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891014

RESUMO

Plipastatin, an antimicrobial peptide produced by Bacillus subtilis, exhibits remarkable antimicrobial activity against a diverse range of pathogenic bacteria and fungi. However, the practical application of plipastatin has been significantly hampered by its low yield in wild Bacillus species. Here, the native promoters of both the plipastatin operon and the sfp gene in the mono-producing strain M-24 were replaced by the constitutive promoter P43, resulting in plipastatin titers being increased by 27% (607 mg/mL) and 50% (717 mg/mL), respectively. Overexpression of long chain fatty acid coenzyme A ligase (LCFA) increased the yield of plipastatin by 105% (980 mg/mL). A new efflux transporter, YoeA, was identified as a MATE (multidrug and toxic compound extrusion) family member, overexpression of yoeA enhanced plipastatin production to 1233 mg/mL, an increase of 157%, and knockout of yoeA decreased plipastatin production by 70%; in contrast, overexpression or knockout of yoeA in mono-producing surfactin and iturin engineered strains only slightly affected their production, demonstrating that YoeA acts as the major exporter for plipastatin. Co-overexpression of lcfA and yoeA improved plipastatin production to 1890 mg/mL, which was further elevated to 2060 mg/mL after abrB gene deletion. Lastly, the use of optimized culture medium achieved 2514 mg/mL plipastatin production, which was 5.26-fold higher than that of the initial strain. These results suggest that multiple strain engineering is an effective strategy for increasing lipopeptide production, and identification of the novel transport efflux protein YoeA provides new insights into the regulation and industrial application of plipastatin.

3.
J Environ Sci (China) ; 117: 276-284, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725079

RESUMO

Swimming pools adopt chlorination to ensure microbial safety. Giardia has attracted attention in swimming pool water because of its occurrence, pathogenicity, and chlorine resistance. To control Giardia concentrations in pool water and reduce the microbial risk, higher chlorine doses are required during disinfection. Unfortunately, this process produces carcinogenic disinfection byproducts that increase the risk of chemical exposure. Therefore, quantitatively evaluating the comparative microbial vs. chemical exposure risks that stem from chlorination inactivation of Giardia in swimming pool water is an issue that demands attention. We simulated an indoor swimming pool disinfection scenario that followed common real-world disinfection practices. A quantitative microbial risk assessment coupled with a chemical exposure risk assessment was employed to compare the Giardia microbial exposure risk (MER) and the trihalomethane chemical exposure risk (CER) to humans. The results demonstrated a 22% decrease in MER- and CER-induced health exposure risk, from 8.45E-5 at 8:00 to 6.60E-5 at 19:00. Both the MER and CER decreased gradually, dropping to 3.26E-5 and 3.35E-5 at 19:00, respectively. However, the CER exceeded the MER after 18:30 and became the dominant factor affecting the total exposure risk. Past the 18 hr mark, the contribution of trihalomethane CER far exceeded the risk aversion from microbial inactivation, leading to a net increase in total exposure risk despite the declining MER. Swimmers may consider swimming after 19:00, when the total exposure risk is the lowest. Lowering water temperature and/or pH were identified as the most sensitive factors to minimize the overall health exposure risk.


Assuntos
Desinfetantes , Piscinas , Poluentes Químicos da Água , Cloretos , Cloro/análise , Desinfetantes/análise , Desinfetantes/toxicidade , Desinfecção/métodos , Giardia , Halogênios , Humanos , Trialometanos/análise , Água , Poluentes Químicos da Água/análise
4.
ACS Appl Mater Interfaces ; 6(5): 3331-40, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24533919

RESUMO

Recent studies have conclusively shown that the plasmonic performance of Au nanostructures can be enhanced by incorporating Ag. Here, we developed a simple and robust approach for preparing core-shell Au-Ag nanoshuttles (NSs) using single-crystal Au nanorods (NRs) as cores. Upon tailoring the temperature of the reaction system containing alkaline glycine buffer (pH 8.5), exceptionally monodisperse Au-Ag NSs with sharp tips and tunable shell thickness could be routinely achieved in high yield through an epitaxial growth process. In particular, high-resolution transmission electron microscopy and nitric acid corrosive experiments revealed that the shells of these NSs consisted of a homogeneous Au-Ag alloy, rather than pure Ag or Au as previously reported. It was found that glycine played an important role in determining the final metal contents of the shell by regulating the reduction kinetics. In addition, the obatined Au-Ag NSs with sharp tips were shown to have significantly improved refractive index sensitivity and surface-enhanced Raman scattering activity relative to the original Au NRs, making these materials promising for biomedical applications, such as biosensing and biolabeling.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Prata/química , Análise Espectral Raman/instrumentação , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA