Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(7): e2306451, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37878793

RESUMO

All-natural materials derived from cellulose nanofibers (CNFs) are expected to be used to replace engineering plastics and have attracted much attention. However, the lack of crack extension resistance and 3D formability of nanofiber-based structural materials hinders their practical applications. Here, a multiscale interface engineering strategy is reported to construct high-performance cellulose-based materials. The sisal microfibers are surface treated to expose abundant active CNFs with positive charges, thereby enhancing their interfacial combination with the negatively charged CNFs. The robust multiscale dual network enables easy molding of multiscale cellulose-based structural materials into complex 3D special-shaped structures, resulting in nearly twofold and fivefold improvements in toughness and impact resistance compared with those of CNFs-based materials. Moreover, this multiscale interface engineering strategy endows cellulose-based structural materials with better comprehensive performance than petrochemical-based plastics and broadens cellulose's potential for lightweight applications as structural materials with lower environmental effects.

2.
Angew Chem Int Ed Engl ; 62(6): e202211099, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416072

RESUMO

The oriented pore structure of wood endows it with a variety of outstanding properties, among which the low thermal conductivity has attracted researchers to develop wood-like aerogels as excellent thermal insulation materials. However, the increasing demands of environmental protection have put forward new and strict requirements for the sustainability of aerogels. Here, we report an all-natural wood-inspired aerogel consisting of all-natural ingredients and develop a method to activate the surface-inert wood particles to construct the aerogel. The obtained wood-inspired aerogel has channel structure similar to that of natural wood, endowing it with superior thermal insulation properties to most existing commercial sponges. In addition, remarkable fire retardancy and complete biodegradability are integrated. With the above outstanding performances, this sustainable wood-inspired aerogel will be an ideal substitute for the existing commercial thermal insulation materials.

3.
Nano Lett ; 21(21): 8999-9004, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665629

RESUMO

Ubiquitous petrochemical-based plastics pose a potential threat to ecosystems. In response, bioderived and degradable polymeric materials are being developed, but their mechanical and thermal properties cannot compete with those of existing petrochemical-based plastics, especially those used as structural materials. Herein, we report a biodegradable plant cellulose nanofiber (CNF)-derived polymeric structural material with high-density reversible interaction networks between nanofibers, exhibiting mechanical and thermal properties better than those of existing petrochemical-based plastics. This all-green material has substantially improved flexural strength (∼300 MPa) and modulus (∼16 GPa) compared with those of existing petrochemical-based plastics. Its average thermal expansion coefficient is only 7 × 10-6 K-1, which is more than 10 times lower than those of petrochemical-based plastics, indicating its dimension is almost unchanged when heated, and thus, it has a thermal dimensional stability that is better than those of plastics. As a fully bioderived and degradable material, the all-green material offers a more sustainable high-performance alternative to petrochemical-based plastics.


Assuntos
Celulose , Nanofibras , Celulose/química , Ecossistema , Nanofibras/química , Plásticos , Polímeros
4.
ACS Nano ; 15(5): 7889-7898, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33979147

RESUMO

Hydrogel materials have many excellent properties and a wide range of applications. Recently, a new type of hydrogel has emerged: cellulose nanofiber (CNF)-based hydrogels, which have three-dimensional nanofiber networks and unique physical properties. Because CNFs are abundant, renewable, and biodegradable, they are green and eco-friendly nanoscale building blocks. In addition, CNF-based hydrogel materials exhibit excellent mechanical properties and designable functions by different preparation methods and structure designs, demonstrating huge development potential. In this Perspective, we summarize the recent progress in the development of CNF-based hydrogels and introduce their applications in elastic hydrogels, ionic conduction, water purification, and biomedicine, highlighting future trends and opportunities for the further development of CNF-based hydrogels as emerging materials systems.

5.
Nano Lett ; 21(6): 2532-2537, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33683886

RESUMO

Electromagnetic interference (EMI) shielding materials with excellent EMI shielding efficiency (SE), lightweight property, and superb mechanical performance are vitally important for modern society, but it is still a challenge to realize these performances simultaneously on one material. Here, we report a sustainable bioinspired double-network structural material with excellent specific strength (146 MPa g-1 cm3) and remarkable EMI SE (100 dB) from cellulose nanofiber (CNF) and carbon nanotubes (CNTs), which demonstrates remarkable and outstanding performance to both typical metal materials and reported polymer composites. In particular, the bioinspired double-network structure design simultaneously achieves an extremely high electrical conductivity and mechanical strength, which makes it a lightweight, high shielding efficiency, and sustainable structural material for real-life electromagnetic wave shielding applications.

6.
Nano Lett ; 21(2): 952-958, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33401909

RESUMO

Hydrogel materials with high water content and good biocompatibility are drawing more and more attention now, especially for biomedical use. However, it still remains a challenge to construct hydrogel fibers with enough strength and toughness for practical applications. Herein, we report a bio-inspired lotus-fiber-mimetic spiral structure hydrogel bacterial cellulose fiber with high strength, high toughness, high stretchability, and energy dissipation, named biomimetic hydrogel fiber (BHF). The spiral-like structure endows BHF with excellent stretchability through plastic deformation and local failure, assisted by the breaking-reforming nature of the hydrogen bonding network among cellulose nanofibers. With the high strength, high stretchability, high energy dissipation, high hydrophilicity, porous structure, and excellent biocompatibility, BHF is a promising hydrogel fiber for biomedicine. The outstanding stretchability and energy dissipation of BHF allow it to absorb energy from the tissue deformation around a wound and effectively protect the wound from rupture, which makes BHF an ideal surgical suture.


Assuntos
Lotus , Nanofibras , Celulose , Hidrogéis , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...