Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(12): 2769-2779, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805582

RESUMO

In this work, fluorescent properties and excited-state intramolecular proton transfer (ESIPT) processes of 2,5-bis(benzo[d]thiazol-2-yl)phenol (BTP) and its derivatives (BOP and BSeP) with different heteroatom atoms (O and Se) have been systematically explored by the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The calculated absorption and fluorescence emission peaks agree well with the experimental values in acetonitrile. From the data of structures, topological parameters, reduced density gradient analyses, and infrared (IR) vibrational frequencies, the intramolecular hydrogen bonds (IHBs) of BTP and its derivatives are enhanced upon light-excitation. The potential energy curves show that the ESIPT process occurs in BTP and its derivatives after surmounting 0.167-0.306 eV energy barrier. The strength of intramolecular hydrogen bond, HOMO-LUMO energy gap, and red-shifted value of absorption and fluorescence emission wavelengths are dependent on the electron-withdrawing ability of heteroatom from O to S and Se. We believe that this work can pave the way for developing a new ESIPT-based fluorophore with better luminescent properties.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121118, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305361

RESUMO

The excited-state intramolecular proton transfer (ESIPT) mechanism, photophysical properties of 8-(benzo[D] thiazole-2-yl)-7-hydroxy-2H-benzopyran-2-one (L-HKS) and the effect of O/Se atomic substitution on L-HKS have been studied in detail based on density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The S atom in the thiazole ring of L-HKS has been replaced by O/Se atom (denoted to L-HKO/L-HKSe) to analyze the effects of atomic electronegativity on the intramolecular H-bond, absorption/emission spectrum and ESIPT process. Through the analysis of series of calculated results, it can be found that the intramolecular H-bonds at normal form and tautomer form are enhanced and weakened in the S1 state, respectively, which is favorable to ESIPT process. The potential energy curves revealed that the ESIPT process is much easier to occur gradually from L-HKO to L-HKS and L-HKSe, as the electron-withdrawing ability of atom (from O to S and Se) is weakened. The atomic substitution also has an effect on the photophysical properties. From L-HKO to L-HKS, the emission peak at tautomer form red-shifts 70 nm. The energy gaps of the three compounds follow the decreased order of L-HKO (4.866 eV) > L-HKS (4.753 eV) > L-HKSe (4.371 eV) with the weakened electron-withdrawing ability of atom (from O to S and Se), which leads to the gradual red-shift of the absorption spectra from L-HKO to L-HKS and L-HKSe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...