Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(16): 4268-4275, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607695

RESUMO

The search for alternative chemical systems other than polymers with chain topologies for soft structural materials raises general interests in fundamental materials and chemical sciences. It is also appealing from an engineering perspective for the urgent need to resolve the typical trade-offs of polymer systems. Herein, a subnanometer molecular cluster, polyhedral oligomeric silsesquioxanes, is assembled into molecular nanoparticles (MNPs) with star topology. Broadly tunable viscoelasticity can be realized by fine-tuning the MNPs' deformability. Being analogous to polymeric systems, the hierarchical structural relaxation dynamics can be observed, and their relaxation time and temperature dependence are dominated by the linker flexibilities. This not only provides microscopic understanding on MNP's unique viscoelasticity but also offers enormous opportunities for modulating their mechanical properties via linker engineering. Our work proves the possibility of applying structural units with particle topologies for the design of soft structural materials.

2.
Nano Lett ; 24(11): 3307-3314, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456631

RESUMO

Resulting from the dense packing of subnanometer molecular clusters, molecular granular materials (MGMs) are shown to maintain high elasticity far above their apparent glass transition temperature (Tg*). However, our microscopic understanding of their structure-property relationship is still poor. Herein, 1 nm polyhedral oligomeric silsesquioxanes (POSSs) are appended to a backbone chain in a brush configuration with different flexible linker chains. Assemblies of these brush polymers exhibit hierarchical relaxation dynamics with the glass transition arising from the cooperative dynamics of packed POSSs. The interaction among the assemblies can be strengthened by increasing the rigidity of linkers with the MGM relaxation modes changing from colloid- to polymer chain-like behavior, rendering their tunable viscoelasticity. This finally contributes to the decoupling of mechanical and thermal properties by showing elasticity dominant mechanical properties at a temperature 150 K above the Tg*.

3.
Angew Chem Int Ed Engl ; 63(12): e202318355, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38265930

RESUMO

Cost-effective, non-fluorinated polymer proton exchange membranes (PEMs) are highly desirable in emerging hydrogen fuel cells (FCs) technology; however, their low proton conductivities and poor chemical and dimension stabilities hinder their further development as alternatives to commercial Nafion®. Here, we report the inorganic-organic hybridization strategy by facilely complexing commercial polymers, polyvinyl butyral (PVB), with inorganic molecular nanoparticles, H3 PW12 O40 (PW) via supramolecular interaction. The strong affinity among them endows the obtained nanocomposites amphiphilicity and further lead to phase separation for bi-continuous structures with both inter-connected proton transportation channels and robust polymer scaffold, enabling high proton conductivities, mechanical/dimension stability and barrier performance, and the H2 /O2 FCs equipped with the composite PEM show promising power densities and long-term stability. Interestingly, the hybrid PEM can be fabricated continuously in large scale at challenging ~10 µm thickness via typical tape casting technique originated from their facile complexing strategy and the hybrids' excellent mechanical properties. This work not only provides potential material systems for commercial PEMs, but also raises interest for the research on hybrid composites for PEMs.

4.
Angew Chem Int Ed Engl ; 63(1): e202310953, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37749062

RESUMO

This Review addresses the use of X-ray and neutron scattering as well as X-ray absorption to describe how inorganic nanostructured materials assemble, evolve, and function in solution. We first provide an overview of techniques and instrumentation (both large user facilities and benchtop). We review recent studies of soluble inorganic nanostructure assembly, covering the disciplines of materials synthesis, processes in nature, nuclear materials, and the widely applicable fundamental processes of hydrophobic interactions and ion pairing. Reviewed studies cover size regimes and length scales ranging from sub-Ångström (coordination chemistry and ion pairing) to several nanometers (molecular clusters, i.e. polyoxometalates, polyoxocations, and metal-organic polyhedra), to the mesoscale (supramolecular assembly processes). Reviewed studies predominantly exploit 1) SAXS/WAXS/SANS (small- and wide-angle X-ray or neutron scattering), 2) PDF (pair-distribution function analysis of X-ray total scattering), and 3) XANES and EXAFS (X-ray absorption near-edge structure and extended X-ray absorption fine structure, respectively). While the scattering techniques provide structural information, X-ray absorption yields the oxidation state in addition to the local coordination. Our goal for this Review is to provide information and inspiration for the inorganic/materials science communities that may benefit from elucidating the role of solution speciation in natural and synthetic processes.

5.
Angew Chem Int Ed Engl ; 63(4): e202317674, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38055187

RESUMO

Coordinative supramolecular cages with adjustable cavities have found extensive applications in various fields, but the cavity modification strategies for multi-functional structures are still challenging. Here, we present a tension-driven self-expansion strategy for construction of multi-cavity cages with high structural complexity. Under the regulation of strain-induced capping ligands, unprecedented heteromorphosis triple-cavity cages S2 /S4 were obtained based on a metallo-organic ligand (MOL) scaffold. The heteromorphosis cages exhibited significant higher cavity diversity than the homomorphous double-cavity cages S1 /S3 ; all of the cages were thoroughly characterized through various analytical techniques including (1D and 2D) NMR, ESI-MS, TWIM-MS, AFM, and SAXS analyses. Furthermore, the encapsulation of porphyrin in the cavities of these multi-cavity cages were investigated. This research opens up new possibilities for the architecture of heteromorphosis supramolecular cages via precisely controlled "scaffold-capping" assembly with preorganized ligands, which could have potential applications in the development of multifunctional structures with higher complexity.

6.
Angew Chem Int Ed Engl ; 62(49): e202311954, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666792

RESUMO

The precise synthesis of miktoarm star polymers (MSPs) remains one of the great challenges in synthetic chemistry due to the difficulty in locating appropriate structural templates and polymer grafting/growing strategies with high selectivity and efficiency. Herein, ≈2 nm metal-organic polyhedra (MOPs), constructed from the coordination of isophthalic acid (IPA) and Cu2+ , are applied as templates for the precise synthesis of 24-arm MSPs for their unique logarithmic ligand-exchange dynamics. Six different polymers are prepared with IPA as an end group and they further coordinated with Cu2+ to afford the corresponding 24-arm star homo-polymers. MSPs can be obtained by mixing targeted homo-arm star polymers in solutions upon thermal annealing. The compositions of MSPs can be facilely and precisely tuned by the recipe of the star polymer mixtures used. Interestingly, the obtained MSPs can be sorted into homo-arm star polymers through a typical solvent extraction procedure. The hybridization and sorting process can be reversibly conducted through the cycle of thermal annealing and solvent treatment. The complex coordination framework not only opens new avenues for the facile and precise synthesis of MSPs and MOPs with hybrid functionalities, but also provides the capability to design sustainable polymer systems.

7.
Chemistry ; 29(63): e202302352, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37584964

RESUMO

In expanding our research activities of superlattice engineering, designing new giant molecules is the necessary first step. One attempt is to use inorganic transition metal clusters as building blocks. Efficient functionalization of chemically precise transition metal clusters, however, remains a great challenge to material scientists. Herein, we report an efficient thiol-Michael addition approach for the modifications of cyclic titanium-oxo cluster (CTOC). Several advantages, including high efficiency, mild reaction condition, capability of complete addition, high atom economy, as well as high functional group tolerance were demonstrated. This approach can afford high yields of fully functionalized CTOCs, which provides a powerful platform for achieving versatile functionalization of precise transition metal clusters and further applications.

8.
Chem Asian J ; 18(10): e202300184, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37116101

RESUMO

Molecular granular materials (MGMs) are constructed with sub-nanoscale molecular clusters (MCs) as the building units and they have recently been observed to possess enriched functionalities distinct from granular materials of colloid nanoparticles. Herein, the birth and recent research advances in MGMs are summarized with the topics covering the precise synthesis of MC assemblies with target topologies, the hierarchical relaxation dynamics and tuneable viscoelasticity, impact-resistant capacity, and proton conductivity performance. The extremely small size of MC renders them two features: bulk diffusive dynamics with energy scale close to thermal fluctuation energy and the dominant volume fraction of surface structures. This finally leads to the hierarchical relaxation dynamics and broadly tuneable viscoelasticity of MGMs although the structural units are with small sizes and low Mw . Therefore, MGMs have been applied as impact resistant materials and proton conductors for the highly tuneable relaxation dynamics.

9.
Nanoscale ; 15(11): 5469-5475, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36852628

RESUMO

Cellulose nanocrystal (CNC) materials grant abundant possibilities for insulation, however, their extensive application is hindered by the intrinsic tradeoff between their thermal insulating performance and mechanical properties. Here, we show that CNC aerogels with balanced thermal and mechanical performance can be fabricated via a 1 nm metal oxide cluster (phosphotungstic acid, PTA)-assisted unidirectional freeze-drying processing. The as-prepared hybrid aerogels with hierarchical porous structures consisting of layer-by-layer CNC nanosheets enable the decoupling of the strengthening of mechanical properties and the enhancement of thermal insulating capabilities. Within layered structures, the surface-doped nanosized PTA clusters with negative charges behave as dynamic physical cross-linking points, and continuous networks of PTA-doped CNC can be formed via multiple supramolecular interactions (e.g., electrostatic attractions and hydrogen bonds). The afforded stable three-dimensional network structures are able to withstand externally applied forces and large deformations, endowing the aerogels with excellent mechanical performance. Moreover, the inter-layer gap is dominated by nanopores, endowing much lower thermal conductivities along the radial direction in comparison to the axial direction. The addition of PTA clusters also contributes to the obvious enhancements of the fire-retardant properties. Our discoveries provide a facile approach for the design and scalable production of CNC-based insulation materials with optimized mechanical properties and additional fire-retardant properties.

10.
Angew Chem Int Ed Engl ; 62(1): e202214237, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323638

RESUMO

Fractal structures with self-similarity are of fundamental importance in the fields of aesthetic, chemistry and mathematics. Here, by taking advantage of constructs the rational geometry-directed precursor design, we report the construction of two fascinating Platonic solids, the Sierpinski tetrahedron ST-T and the Sierpinski octahedron ST-O, in which each possesses a fractal Sierpinski triangle on their independent faces. These two discrete complexes are formed in near-quantitative yield from the multi-component self-assembly of truncated Sierpinski triangular kernel L1 with tribenzotriquinacene-based hexatopic and anthracene-based tetratopic terpyridine ligands (L3 and L4 ) in the presence of metal ions, respectively. The enhanced stabilities of the 3D discrete structures were investigated by gradient tandem mass spectrometry (gMS2 ). This work provides new constructs for the imitation of complex virus assemblies and for the molecular encapsulation of giant guest molecules.


Assuntos
Espectrometria de Massas em Tandem , Ligantes
11.
Chem Sci ; 13(39): 11633-11638, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36320389

RESUMO

Materials with promising mechanical performance generally demonstrate requirements for the critical sizes of their key building units, e.g. entanglements and crystal grains. Herein, only with van der Waals interaction, viscoelasticity with broad tunability has been facilely achieved below the critical size limits: the dimers of ∼1 nm polyhedral oligomeric silsesquioxane (POSS) with M w < 4 kD and size < 5 nm, which demonstrate distinct material physics compared to that of polymer nanocomposites of POSS. The dimeric POSSs are confirmed by scattering and calorimetrical measurements to be intrinsic glassy materials with glass transition temperatures (T gs) lower than room temperature. From rheological studies, their viscoelasticity can be broadly tuned through the simple tailoring of the dimer linker structures above their T g. In dimer bulks, each POSS cluster is spatially confined by the POSSs from other dimers and therefore, the correlation of the dynamics of the two linked POSS clusters, which, as indicated by dynamics analysis, is regulated by the length and flexibilities of linkers, contributes to the caging dynamics of POSS confined by their neighbours and the resulting unique viscoelasticity. Our discoveries update the understanding of the structural origin of viscoelasticity and open avenues to fabricate structural materials from the design of sub-nanoscale building blocks.

12.
Soft Matter ; 18(33): 6264-6269, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35959721

RESUMO

Coordination nanocage (CNC) incorporated gels have attracted enormous attention for the effective integration of micro-porosity, mechanical flexibility and processability; however, the understanding of their microscopic structure-property relationships remains unclear. Herein, CNCs with 24 surface grafted cholesterol groups are constructed precisely and their gelation can be manipulated upon the tunning of solvent polarities. Optically homogeneous organogels can be formed by introducing a certain amount of bad solvents into the solutions of hairy CNCs and the gelation can be reversed through temperature variation. Suggested from scattering and molecular dynamics studies, the solvophobic interaction-driven aggregation of cholesterol units contributes to the physical crosslinking of CNCs and finally the gelation of CNC solutions. The mechanical strength of the obtained gels is observed to be highly dependent on the flexibility of the organic linkers that bond the cholesterol units on the CNC surface. The effective interaction and dense packing of the cholesterol units in their aggregates highly rely on the degree of freedom of the cholesterol, which is controlled by the flexibility of the organic linkers that bond them on the CNC surface. The observed viscoelastic performance accompanied by the well-controlled mechanical strength of the organogels unambiguously demonstrates the potential for exploiting the synergistic physical correlations to fabricate novel functional materials from CNCs.

13.
Angew Chem Int Ed Engl ; 60(41): 22212-22218, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34375017

RESUMO

The intrinsic conflicts between mechanical performances and processability are main challenges to develop cost-effective impact-resistant materials from polymers and their composites. Herein, polyhedral oligomeric silsesquioxanes (POSSs) are integrated as side chains to the polymer backbones. The one-dimension (1D) rigid topology imposes strong space confinements to realize synergistic interactions among POSS units, reinforcing the correlations among polymer chains. The afforded composites demonstrate unprecedented mechanical properties with ultra-stretchability, high rate-dependent strength, superior impact-resistant capacity as well as feasible processability/recoverability. The hierarchical structures of the hybrid polymers enable the co-existence of multiple dynamic relaxations that are responsible for fast energy dissipation and high mechanical strengths. The effective synergistic correlation strategy paves a new pathway for the design of advanced cluster-based materials.

14.
J Phys Chem Lett ; 12(22): 5395-5403, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080876

RESUMO

With access to the solution structures of nanocomposites of coordination nanocages (CNCs) via scattering and chromatography techniques, their mysterious solution dynamics have been, for the first time, resolved, and interestingly, the surface macromolecules can be substituted by extra free macromolecules in solutions. Obvious exchange of macromolecules can be observed in the solution mixtures of CNC nanocomposites at high temperatures, revising the understanding of the dynamics of CNC nanocomposites. Being distinct from nanocomposites of a simple coordination complex, the quantified solution dynamics of CNC nanocomposites indicates a typical logarithmic time dependence with the dissociation of surface macromolecules as the thermodynamically limiting step, suggesting strongly coupled and hierarchically constrained dynamics among the surface macromolecules. Their dynamics can be activated only upon application of high temperature or selected solvents, and therefore, the rational design of polymer assemblies, for example, hybrid-arm star polymers with precisely controlled compositions and reprocessable, robust CNC-cross-linked supramolecular polymer networks, is facilitated.

15.
Angew Chem Int Ed Engl ; 60(9): 4894-4900, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33210413

RESUMO

Granular materials, composed of densely packed particles, are known to possess unique mechanical properties that are highly dependent on the surface structure of the particles. A microscopic understanding of the structure-property relationship in these systems remains unclear. Here, supra-nanoparticle clusters (SNPCs) with precise structures are developed as model systems to elucidate the unexpected elastic behaviors. SNPCs are prepared by coordination-driven assembly of polyhedral oligomeric silsesquioxane (POSS) with metal-organic polyhedron (MOP). Due to the disparity in sizes, the POSS-MOP assemblies, like their classic nanoparticles counterparts, ordering is suppressed, and the POSS-MOP mixtures will vitrify or jam as a function of decreasing temperature. An unexpected elasticity is observed for the SNPC assemblies with a high modulus that is maintained at temperatures far beyond the glass transition temperature. From studies on the dynamics of the hierarchical structures of SNPCs and molecular dynamic simulation, the elasticity has its origins in the interpenetration of POSS-ended arms. The physical molecular interpenetration and inter-locking phenomenon favors the convenient solution or pressing processing of the novel cluster-based elastomers.

16.
J Am Chem Soc ; 143(6): 2537-2544, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33378184

RESUMO

Nanosized cage-within-cage compounds represent a synergistic molecular self-assembling form of three-dimensional architecture that has received particular research focus. Building multilayered ultralarge cages to simulate complicated virus capsids is believed to be a tough synthetic challenge. Here, we synthesize two large double-shell supramolecular cages by facile self-assembly of presynthesized metal-organic hexatopic terpyridine ligands with metal ions. Differing from the mixture of prisms formed from the inner tritopic ligand, the redesigned metal-organic hexatopic ligands bearing high geometric constraints that led to the exclusive formation of discrete double-shell structures. These two unique nested cages are composed of inner cubes (5.1 nm) and outer huge truncated cubes (12.0 and 13.2 nm) with six large bowl-shape subcages distributed on six faces. The results with molecular weights of 75 232 and 77 667 Da were among the largest synthetic cage-in-cage supramolecules reported to date. The composition, size and shape were unambiguously characterized by a combination of 1H NMR, DOSY, ESI-MS, TWIM-MS, TEM, AFM, and SAXS. This work provides an interesting model for functional recognition, delivery, and detection of various guest molecules in the field of supramolecular materials.

17.
Macromol Rapid Commun ; 40(3): e1800714, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30408258

RESUMO

A novel photoresponsive, water-soluble supramolecular dendronized polymer (SDP) is prepared through a γ -cyclodextrin (γ -CD)-coumarin host-guest interaction. The supramolecular formation, photoresponsive process, and fluorescence properties are investigated by nuclear magnetic resonance (NMR) techniques and spectrometric measurements. Upon different-wavelength light irradiation, this supramolecular polymer undergoes noncovalent polymer and covalent polymer conversion due to coumarin cycloaddition and cleavage reactions. In addition, SDP for bioimaging in Michigan Cancer Foundation-7 (MCF-7) cells is performed and results show that the obtained SDP has good biocompatibility and is lysosome-targetable. This research enriches the field of supramolecular dendrimers and the photo-stimulation response material may have application prospects in organelle-targeting applications.


Assuntos
Dendrímeros/química , Lisossomos/metabolismo , Polímeros/química , Água/química , Cumarínicos/química , Fluorescência , Humanos , Células MCF-7 , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Modelos Químicos , Estrutura Molecular , Processos Fotoquímicos , Polímeros/síntese química , Solubilidade , gama-Ciclodextrinas/química
18.
ACS Omega ; 3(7): 7727-7735, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458920

RESUMO

Conjugated porous polymers (CPPs) possess great potential in the energy storage aspect. In this work, a boron-dipyrromethene (BODIPY)-conjugated porous polymer (CPP-1) is achieved by a traditional organic synthesis route. Following this, a carbonization process is employed to obtain the carbonized porous material (CPP-1-C). The two as-prepared samples, which are characterized by doping with heteroatoms and their porous structure, are able to shorten the lithium-ion pathways and improve the lithium-ion storage property. Then, CPP-1 and CPP-1-C are applied as anode materials in lithium-ion batteries. As expected, long-term cyclic performances at 0.1 and 1 A g-1 are achieved with maintaining the specific capacity at 273.2 mA h g-1 after 100 cycles at 0.1 A g-1 and 250.8 mA h g-1 after 300 cycles at 1 A g-1. The carbonized sample exhibits a better electrochemical performance with a reversible specific capacity of 675 mA h g-1 at 0.2 A g-1. Moreover, the capacity is still stabilized at 437 mA h g-1 after 500 cycles at 0.5 A g-1. These results demonstrate that BODIPY-based CPPs are capable of being exploited as promising candidates for electrode materials in the fields of energy storage and conversion.

19.
J Asian Nat Prod Res ; 20(6): 525-530, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29156968

RESUMO

Three new monoterpenoid alkaloids, melomorines A-C (1-3), along with melohemsine B (4), were isolated from the 70% ethanol extract of the aerial parts of Melodinus morsei. Structural elucidation of all the compounds was performed on the basis of spectral data. All the compounds were tested in vitro for cytotoxic activities. As a result, alkaloids 1, 2, and 4 exhibited cytotoxicities against all the five tested tumor cell lines with IC50 value of less than 20 µM.


Assuntos
Alcaloides/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Apocynaceae/química , Alcaloides/química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular
20.
Chem Asian J ; 12(23): 3088-3095, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-28960824

RESUMO

A novel near-infrared (NIR)-emissive amphiphilic BODIPY derivative, BBDP, was successfully prepared and thoroughly characterized. The photophysical properties in various organic solvents and THF/H2 O mixtures with different fractions of water were investigated. BBDP self-assembled into nanofibers in a water environment owing to its amphiphilic properties. Through charge-transfer interactions, BBDP co-assembled with a perylene bisimide derivative, PBI, and a viologen derivative, MV, to generate two superamphiphiles. These two superamphiphiles were able to aggregate in water media at appropriate concentrations. The BBDP-PBI charge-transfer complex formed nanorods, whereas the BBDP-MV aggregates expressed a disk-like morphology. This research paves the way for us to manipulate the morphology of dye assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...