Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(13): 1813-1816, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36722877

RESUMO

Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.

2.
Chemistry ; 29(5): e202202858, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36331543

RESUMO

Metal phosphides are promising noble metal-free electrocatalysts for hydrogen evolution reaction (HER), but they usually suffer from inferior stability and thus are far from the device applications. We reported a facile and controllable synthetic method to prepare metal-incorporated M-FeP nanoparticles (M=Cr, Mn, Co, Fe, Ni, Cu, and Mo) with the guide of the density functional theory (DFT). The evaluated HER activity sequence was consistent with the DFT predictions, and cobalt was revealed to be the appropriate dopant. With the optimization of the Co/Fe ratio, the Fe0.67 Co0.33 P/C only required overpotentials of 67 mV and 129 mV to obtain the cathodic current density of 10 and 100 mA cm-2, respectively. It maintained the initial activity in the 10 h stability test, surpassing the other Co-FeP/C catalysts. Ex situ experiments demonstrated that the decreased element leaching and the increased surface phosphide content contributed to the high stability of the Fe0.67 Co0.33 P/C. A proton exchange membrane water electrolyzer was assembled using the Fe0.67 Co0.33 P/C as the cathodic catalyst. It showed a current density of 0.8 A cm-2 at the applied voltage of 2.0 V and retained the initial activity in the 1000 cycles' stability test, suggesting the potential application of the catalysts.


Assuntos
Hidrogênio , Metais , Prótons , Cobalto , Água
3.
Front Bioeng Biotechnol ; 10: 1002006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246348

RESUMO

Photoacoustic (PA) imaging in the second near-infrared (NIR-II) window has gained more and more attention in recent years and showed great potential in the field of bioimaging. Until now, numerous materials have been developed as contrast agents for NIR-II PA imaging. Among them, small molecule dyes hold unique advantages such as definite structures and capability of fast clearance from body. By virtue of these advantages, small molecule dyes-constructed nanoparticles have relatively small size and show promise in the clinical translation. Thus, in this minireview, we summarize recent advances in small molecule dyes-based nanotheranostics for NIR-II PA imaging and cancer therapy. Studies about NIR-II PA imaging-guided phototherapy are first introduced. Then, NIR-II PA imaging-guided phototherapy-based combination therapeutic systems are reviewed. Finally, the conclusion and perspectives of this field are summarized and discussed.

4.
Small ; 18(19): e2200152, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398988

RESUMO

Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium-overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium-overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin-decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium-overload cancer therapy without adding an additional calcium element. CSPN is composed of a near-infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin-conjugated amphiphilic copolymer, PEG-PHEMA-Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1 O2 ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR-II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR-II fluorescence imaging-guided calcium-overload/PDT combination therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Cálcio , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Polímeros/uso terapêutico
5.
Inorg Chem ; 61(6): 2954-2961, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35104118

RESUMO

Iron phosphide nanoparticles (NPs) are promising noble metal-free electrocatalysts for the hydrogen evolution reaction (HER), but they usually show inferior activity due to the limited surface area and oxidative passivation. We reported a facile synthetic method to prepare FeP hollow NPs (HNPs) with various precursors. It was proven that the structural parameters (i.e., size, phosphating temperature, phase, and surfactant) of oxide precursors were correlated to the electrochemically active surface area (ECSA), phase purity, surface oxidation, and hollow morphology of FeP HER catalysts, thus affecting the HER activity. Among the three FeP HNPs, the 9 nm FeP HNPs prepared using the Fe3O4 precursor exhibited the highest overall activity with the lowest overpotential of 76 mV to drive a cathodic current density of 10 mA·cm-2 due to the highest ECSA, while 25 nm FeP prepared using the Fe2O3 precursor showed the highest turnover frequency because of the high phase purity and low surface oxidation degree.

6.
Small ; 17(28): e2100832, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117841

RESUMO

Developing highly efficient, low-cost electrocatalysts with long-time stability at high current density working conditions for hydrogen evolution reaction (HER) remains a great challenge for the large-scale commercialization of hydrogen production from water electrolysis. Herein, the Cr-doped CoP nanorod arrays on carbon cloth (Cr-CoP-NR/CC) is reported as high performance HER catalysts with overpotentials of 38 and 209 mV at the HER current densities of 10 and 500 mA cm-2 , respectively, outperforming the performance of the commercial Pt/C at high current density. And its HER performance shows almost no loss after 20 h working at 500 mA cm-2 . The high performance is attributed to the Cr doping, which optimizes the hydrogen binding energy of CoP and prevents its oxidation. The nanorod array structure helps the escaping of the generated hydrogen gas, which is suitable for working at high current density. The obtained Cr-CoP-NR/CC catalyst shows the potential to replace the costly Pt-based HER catalysts in the water electrolyzer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA