Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0137723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38197629

RESUMO

Gut microbiota-derived metabolites are important for the replication and pathogenesis of many viruses. However, the roles of bacterial metabolites in swine enteric coronavirus (SECoV) infection remain poorly understood. Recent studies show that SECoVs infection in vivo significantly alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota. This prompted us to investigate whether and how SCFAs impact SECoV infection. Employing alphacoronavirus transmissible gastroenteritis virus (TGEV), a major cause of diarrhea in piglets, as a model, we found that SCFAs, particularly butyrate, enhanced TGEV infection both in porcine intestinal epithelial cells and swine testicular (ST) cells at the late stage of viral infection. This effect depended on the inhibited productions of virus-induced type I interferon (IFN) and downstream antiviral IFN-stimulated genes (ISGs) by butyrate. Mechanistically, butyrate suppressed the expression of retinoic acid-inducible gene I (RIG-I), a key viral RNA sensor, and downstream mitochondrial antiviral-signaling (MAVS) aggregation, thereby impairing type I IFN responses and increasing TGEV replication. Using pharmacological and genetic approaches, we showed that butyrate inhibited RIG-I-induced type I IFN signaling by suppressing class I histone deacetylase (HDAC). In summary, we identified a novel mechanism where butyrate enhances TGEV infection by suppressing RIG-I-mediated type I IFN responses. Our findings highlight that gut microbiota-derived metabolites like butyrate can be exploited by SECoV to dampen innate antiviral immunity and establish infection in the intestine.IMPORTANCESwine enteric coronaviruses (SECoVs) infection in vivo alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota, but whether microbiota-derived SCFAs impact coronavirus gastrointestinal infection is largely unknown. Here, we demonstrated that SCFAs, particularly butyrate, substantially increased alphacoronavirus TGEV infection at the late stage of infection, without affecting viral attachment or internalization. Furthermore, enhancement of TGEV by butyrate depended on impeding virus-induced type I interferon (IFN) responses. Mechanistically, butyrate suppressed the cytoplasmic viral RNA sensor RIG-I expression and downstream type I IFN signaling activation by inhibiting class I HDAC, thereby promoting TGEV infection. Our work reveals novel functions of gut microbiota-derived SCFAs in enhancing enteric coronavirus infection by impairing RIG-I-dependent type I IFN responses. This implies that bacterial metabolites could be therapeutic targets against SECoV infection by modulating antiviral immunity in the intestine.


Assuntos
Butiratos , Infecções por Coronavirus , Coronavirus , Microbioma Gastrointestinal , Interferon Tipo I , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Butiratos/metabolismo , Coronavirus/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Interferon Tipo I/imunologia , RNA Viral , Suínos , Vírus da Gastroenterite Transmissível/fisiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia
2.
J Virol ; 96(7): e0015822, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35311551

RESUMO

Major histocompatibility complex class I (MHC-I) and MHC-II molecules, mainly being responsible for the processing and presentation of intracellular or extracellular antigen, respectively, are critical for antiviral immunity. Here, we reported that porcine deltacoronavirus (PDCoV) with the zoonotic potential and potential spillover from pigs to humans, upregulated the expressions of porcine MHC-I (swine leukocyte antigen class I, SLA-I) molecules and SLA-I antigen presentation associated genes instead of porcine MHC-II (SLA-II) molecules both in primary porcine enteroids and swine testicular (ST) cells at the late stage of infection, and this finding was verified in vivo. Moreover, the induction of SLA-I molecules by PDCoV infection was mediated through enhancing the expression of NOD-like receptor (NLR) family caspase recruitment domain-containing 5 (NLRC5). Mechanistic studies demonstrated that PDCoV infection robustly elevated retinoic acid-inducible gene I (RIG-I) expression, and further initiated the downstream type I interferon beta (IFN-ß) production, which led to the upregulation of NLRC5 and SLA-I genes. Likewise, interferon regulatory factor 1 (IRF1) elicited by PDCoV infection directly activated the promoter activity of NLRC5, resulting in an increased expression of NLRC5 and SLA-I upregulation. Taken together, our findings advance our understanding of how PDCoV manipulates MHC molecules, and knowledge that could help inform the development of therapies and vaccines against PDCoV. IMPORTANCE MHC-I molecules play a crucial role in antiviral immunity by presenting intracellular antigens to CD8+T lymphocytes and eliminating virus-infected cells by natural killer cells' "missing-self recognition." However, the manipulation of MHC molecules by coronaviruses remains poorly understood. Here, we demonstrated that PDCoV, a zoonotic potential coronavirus efficiently infecting cells from broad species, greatly increased the expressions of porcine MHC-I (SLA-I) molecules and MHC-I antigen presentation associated genes but not porcine MHC-II (SLA-II) molecules both in vitro and in vivo. Mechanistically, the upregulation of MHC-I molecules by PDCoV infection required the master transactivator of MHC-I, NLRC5, which was mediated not only by RIG-I-initiated type I IFN signaling pathway but also by IRF1 induced by PDCoV as it could activate NLRC5 promoter activity. These results provide significant insights into the modification of the MHC class I pathway and may provide a potential therapeutic intervention for PDCoV.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Antígenos de Histocompatibilidade Classe I , Animais , Infecções por Coronavirus/imunologia , Deltacoronavirus/imunologia , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Suínos
3.
Front Immunol ; 12: 826882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126380

RESUMO

Swine enteric coronaviruses (SECoVs) including porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), and porcine deltacoronavirus (PDCoV), account for the majority of lethal watery diarrhea in neonatal pigs and pose significant economic and public health burdens in the world. While the three SECoVs primarily infect intestinal epithelia in vivo and cause similar clinical signs, there are evident discrepancies in their cellular tropism and pathogenicity. However, the underlying mechanisms to cause the differences remain unclear. Herein, we employed porcine enteroids that are a physiologically relevant model of the intestine to assess the host epithelial responses following infection with the three SECoVs (PEDV, TGEV, and PDCoV). Although SECoVs replicated similarly in jejunal enteroids, a parallel comparison of transcriptomics datasets uncovered that PEDV and TGEV infection induced similar transcriptional profiles and exhibited a more pronounced response with more differentially expressed genes (DEGs) in jejunal enteroids compared with PDCoV infection. Notably, TGEV and PDCoV induced high levels of type I and III IFNs and IFN-stimulated gene (ISG) responses, while PEDV displayed a delayed peak and elicited a much lesser extent of IFN responses. Furthermore, TGEV and PDCoV instead of PEDV elicited a substantial upregulation of antigen-presentation genes and T cell-recruiting chemokines in enteroids. Mechanistically, we demonstrated that IFNs treatment markedly elevated the expression of NOD-like receptor (NLR) family NLRC5 and major histocompatibility complex class I (MHC-I) molecules. Together, our results indicate unique and common viral strategies for manipulating the global IFN responses and antigen presentation utilized by SECoVs, which help us a better understanding of host-SECoVs interactions.


Assuntos
Apresentação de Antígeno/imunologia , Infecções por Coronavirus/veterinária , Regulação da Expressão Gênica , Interferons/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Doenças dos Suínos/etiologia , Doenças dos Suínos/metabolismo , Animais , Gastroenterite Suína Transmissível/etiologia , Gastroenterite Suína Transmissível/metabolismo , Gastroenterite Suína Transmissível/patologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Suínos , Doenças dos Suínos/patologia , Vírus da Gastroenterite Transmissível
4.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376622

RESUMO

Porcine deltacoronavirus (PDCoV) is an economically important enteropathogen of swine with worldwide distribution. PDCoV primarily infects the small intestine instead of the large intestine in vivo However, the underlying mechanism of PDCoV tropism to different intestinal segments remains poorly understood as a result of the lack of a suitable in vitro intestinal model that recapitulates the cellular diversity and complex functions of the gastrointestinal tract. Here, we established the PDCoV infection model of crypt-derived enteroids from different intestinal segments. Enteroids were susceptible to PDCoV, and multiple types of different functional intestinal epithelia were infected by PDCoV in vitro and in vivo We further found that PDCoV favorably infected the jejunum and ileum and restrictedly replicated in the duodenum and colon. Mechanistically, enteroids from different intestinal regions displayed a distinct gene expression profile, and the differential expression of primary viral receptor host aminopeptidase N (APN) instead of the interferon (IFN) responses determined the susceptibility of different intestinal segments to PDCoV, although PDCoV substantially elicited antiviral genes production in enteroids after infection. Additional studies showed that PDCoV infection significantly induced the expression of type I and III IFNs at the late stage of infection, and exogenous IFN inhibited PDCoV replication in enteroids. Hence, our results provide critical inputs to further dissect the molecular mechanisms of PDCoV-host interactions and pathogenesis.IMPORTANCE The zoonotic potential of the PDCoV, a coronavirus efficiently infecting cells from a broad range species, including porcine, chicken, and human, emphasizes the urgent need to further study the cell and tissue tropism of PDCoV in its natural host. Herein, we generated crypt stem cell-derived enteroids from porcine different intestinal regions, which well recapitulated the events in vivo of PDCoV infection that PDCoV targeted multiple types of intestinal epithelia and preferably infected the jejunum and ileum over the duodenum and colon. Mechanistically, we demonstrated that the expression of APN receptor rather than the IFN responses determined the susceptibility of different regions of the intestines to PDCoV infection, though PDCoV infection markedly elicited the IFN responses. Our findings provide important insights into how the distinct gene expression profiles of the intestinal segments determine the cell and tissue tropism of PDCoV.


Assuntos
Antígenos CD13/genética , Infecções por Coronavirus/veterinária , Coronavirus/fisiologia , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Tropismo Viral , Animais , Enterocolite/metabolismo , Enterocolite/patologia , Enterocolite/virologia , Interferons/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Suínos , Doenças dos Suínos/patologia , Replicação Viral
5.
Front Immunol ; 10: 2394, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681286

RESUMO

Type III interferon-lambda (IFN-λ) plays a critical role against infection, particularly in mucosal infection in the respiratory and gastrointestinal tract. Our study and other previous studies have shown that porcine IFN-λ more efficiently curtails the infection of porcine epidemic diarrhea virus (PEDV) in the intestine epithelia than type I IFN, whereas IFN-λ3 exerts a more potent effect than IFN-λ1. However, the underlying mechanism remains elusive, and in particular, the transcriptional profile induced by IFN-λ3 has not been reported. Here, to resolve the mechanism responsible for the disparity between IFN-λ3 and type I IFN in anti-mucosal virus infection, we compared the transcription profiles induced by the two IFNs in porcine intestinal epithelial (IPEC-J2) cells by RNA-Seq. Our results showed that the pretreatment of IPEC-J2 cells with IFN-λ3 resulted in the differential expression of 983 genes. In contrast, IFN-α only modified the expression of 134 genes, and 110 of these genes were also observed in the response to IFN-λ3. A transcriptional enrichment analysis indicated that IFN-λ3 or IFN-α regulates multiple cellular processes and that IFN-λ3 activates more robust signaling pathways, particularly the antiviral Jak-STAT signaling pathway, than IFN-α. Furthermore, we verified the RNA-Seq results through an RT-qPCR analysis of IPEC-J2 cells and porcine enteroids. Moreover, transient expression of the porcine rsad2 and mx2 genes among the top 10 genes induced by IFN-λ3 significantly inhibited PEDV infection. Collectively, the data showed that IFN-λ3 induces a unique transcriptional profile that does not completely overlap with that induced by IFN-α and strongly elicits a set of genes responsible for the antiviral activity of IFN-λ3. These findings provide important knowledge regarding the elicited ISGs of type I and III IFNs in restricting porcine intestinal viral infection.


Assuntos
Infecções por Coronavirus/imunologia , Interferons/imunologia , Mucosa Intestinal/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Transdução de Sinais/imunologia , Transcrição Gênica/imunologia , Animais , Linhagem Celular , Infecções por Coronavirus/patologia , Mucosa Intestinal/patologia , Suínos
6.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541861

RESUMO

Porcine epidemic diarrhea virus (PEDV), a member of the group of alphacoronaviruses, is the pathogen of a highly contagious gastrointestinal swine disease. The elucidation of the events associated with the intestinal epithelial response to PEDV infection has been limited by the absence of good in vitro porcine intestinal models that recapitulate the multicellular complexity of the gastrointestinal tract. Here, we generated swine enteroids from the intestinal crypt stem cells of the duodenum, jejunum, or ileum and found that the generated enteroids are able to satisfactorily recapitulate the complicated intestinal epithelium in vivo and are susceptible to infection by PEDV. PEDV infected multiple types of cells, including enterocytes, stem cells, and goblet cells, and exhibited segmental infection discrepancies compared with ileal enteroids and colonoids, and this finding was verified in vivo Moreover, the clinical isolate PEDV-JMS propagated better in ileal enteroids than the cell-adapted isolate PEDV-CV777, and PEDV infection suppressed interferon (IFN) production early during the infection course. IFN lambda elicited a potent antiviral response and inhibited PEDV in enteroids more efficiently than IFN alpha (IFN-α). Therefore, swine enteroids provide a novel in vitro model for exploring the pathogenesis of PEDV and for the in vitro study of the interplay between a host and a variety of swine enteric viruses.IMPORTANCE PEDV is a highly contagious enteric coronavirus that causes significant economic losses, and the lack of a good in vitro model system is a major roadblock to an in-depth understanding of PEDV pathogenesis. Here, we generated a porcine intestinal enteroid model for PEDV infection. Utilizing porcine intestinal enteroids, we demonstrated that PEDV infects multiple lineages of the intestinal epithelium and preferably infects ileal enteroids over colonoids and that enteroids prefer to respond to IFN lambda 1 over IFN-α. These events recapitulate the events that occur in vivo This study constitutes the first use of a primary intestinal enteroid model to investigate the susceptibility of porcine enteroids to PEDV and to determine the antiviral response following infection. Our study provides important insights into the events associated with PEDV infection of the porcine intestine and provides a valuable in vitro model for studying not only PEDV but also other swine enteric viruses.


Assuntos
Infecções por Coronavirus/imunologia , Gastroenteropatias/veterinária , Imunidade Inata/imunologia , Mucosa Intestinal/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Duodeno/citologia , Duodeno/virologia , Gastroenteropatias/virologia , Íleo/citologia , Íleo/virologia , Interferons/biossíntese , Mucosa Intestinal/virologia , Jejuno/citologia , Jejuno/virologia , Modelos Biológicos , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/virologia , Células Vero
7.
J Virol ; 92(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185587

RESUMO

In host innate immunity, type I interferons (IFN-I) are major antiviral molecules, and coronaviruses have evolved diverse strategies to counter the IFN-I response during infection. Transmissible gastroenteritis virus (TGEV), a member of the Alphacoronavirus family, induces endoplasmic reticulum (ER) stress and significant IFN-I production after infection. However, how TGEV evades the IFN-I antiviral response despite the marked induction of endogenous IFN-I has remained unclear. Inositol-requiring enzyme 1 α (IRE1α), a highly conserved ER stress sensor with both kinase and RNase activities, is involved in the IFN response. In this study, IRE1α facilitated TGEV replication via downmodulating the host microRNA (miR) miR-30a-5p abundance. miR-30a-5p normally enhances IFN-I antiviral activity by directly targeting the negative regulators of Janus family kinase (JAK)-signal transducer and activator of transcription (STAT), the suppressor of cytokine signaling protein 1 (SOCS1), and SOCS3. Furthermore, TGEV infection increased SOCS1 and SOCS3 expression, which dampened the IFN-I antiviral response and facilitated TGEV replication. Importantly, compared with mock infection, TGEV infection in vivo resulted in decreased miR-30a-5p levels and significantly elevated SOCS1 and SOCS3 expression in the piglet ileum. Taken together, our data reveal a new strategy used by TGEV to escape the IFN-I response by engaging the IRE1α-miR-30a-5p/SOCS1/3 axis, thus improving our understanding of how TGEV escapes host innate immune defenses.IMPORTANCE Type I interferons (IFN-I) play essential roles in restricting viral infections. Coronavirus infection induces ER stress and the interferon response, which reflects different adaptive cellular processes. An understanding of how coronavirus-elicited ER stress is actively involved in viral replication and manipulates the host IFN-I response has remained elusive. Here, TGEV inhibited host miR-30a-5p via the ER stress sensor IRE1α, which led to the increased expression of negative regulators of JAK-STAT signaling cascades, namely, SOCS1 and SOCS3. Increased SOCS1 or SOCS3 expression impaired the IFN-I antiviral response, promoting TGEV replication. These findings enhance our understanding of the strategies used by coronaviruses to antagonize IFN-I innate immunity via IRE1α-mediated manipulation of the miR-30a-5p/SOCS axis, highlighting the crucial role of IRE1α in innate antiviral resistance and the potential of IRE1α as a novel target against coronavirus infection.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Endorribonucleases/metabolismo , Evasão da Resposta Imune/imunologia , Interferon Tipo I/imunologia , MicroRNAs/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Vírus da Gastroenterite Transmissível/imunologia , Animais , Linhagem Celular , Estresse do Retículo Endoplasmático/genética , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune/genética , Imunidade Inata/imunologia , Janus Quinases/metabolismo , Sus scrofa , Vírus da Gastroenterite Transmissível/genética , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...