Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Androl Urol ; 13(3): 383-396, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38590969

RESUMO

Background: Papillary renal neoplasm with reverse polarity (PRNRP) is a novel entity with unique clinicopathological characteristics, and only a small number of patients with PRNRP have been described. Methods: We retrospectively analyzed the data for nine patients with PRNRP and evaluated differences in the clinical, histomorphological, immunohistochemical, and molecular features; prognosis; and differential diagnosis of PRNRP from other renal tumors with papillary structure. Results: There were six males and three females aged 36 to 74 years (mean: 62.33 years; median: 68 years). All the tumors were solitary and ranged from 1 to 3.7 cm (mean: 2.17 cm; median: 2 cm), with three and six tumors arose in the left and right renal tract, respectively. Pathologically, PRNRP is a small, well-circumscribed neoplasm with predominant papillary formations. The lining epithelium is composed of a monolayer of cuboidal to low-columnar cells with low-grade nuclei arranged against the apical pole of the tumor cells. Edema, mucinous degeneration, and hyaline degeneration are found in the fibrovascular cores. Foamy macrophages, psammoma bodies, hemosiderin deposition, and infiltrative tumor boundaries were present in some patients. Immunohistochemically, all tumors showed diffuse positive staining for GATA3. Sanger sequencing confirmed the presence of KRAS mutation in seven patients. All patients had a good prognosis after surgery and were relapse free. Positive staining for GATA3 and negative staining for vimentin were the most significant markers for differentiating PRNRP from other renal tumors with analogous structure. Conclusions: These findings suggested that PRNRP is a distinctive subtype of renal tumor with specific pathological features and indolent behaviors that should be distinguished from other renal tumors, especially papillary renal cell carcinoma. A monolayer of tumor cells with an inverted nuclear pattern, positive staining for GATA3, and KRAS mutation are essential for pathological diagnosis. Owing to its satisfactory prognosis, the surveillance and follow-up of patients with PRNRP should be additionally formulated.

2.
J Hepatocell Carcinoma ; 11: 191-206, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283692

RESUMO

Background: Microvascular invasion (MVI) is closely correlated with poor clinical outcomes in patients with hepatocellular carcinoma (HCC). A grading system of MVI is needed to assist in the management of HCC patient. Methods: Multicenter data of HCC patients who underwent liver resection with curative intent was analyzed. This grading system was established by detected number and distance from tumor boundary of MVI. Survival outcomes were compared among patients in each group. This system was verified by time-receiver operating characteristic curve, time-area under the curve, calibration curve, and decision curve analyses. Cox regression analysis was performed to study the associated factors of prognosis. Logistic analysis was used to study the predictive factors of MVI. Results: All patients were classified into 4 groups: M0: no MVI; M1: 1~5 proximal MVIs (≤1 cm from tumor boundary); M2a: >5 proximal MVIs (≤1 cm from tumor boundary); M2b: ≥1 distal MVIs (>1 cm from tumor boundary). The recurrence-free survival (RFS), overall survival (OS), and early RFS rates among all the individual groups were significantly different. Based on the number of proximal MVI (0~5 vs >5), patients in the M2b group were further divided into two subgroups which also showed different prognosis. Multiple methods showed this grading system to be significantly better than the MVI two-tiered system in prognostic evaluation. Four multivariate models for RFS, OS, early RFS, late RFS, and a predictive model of MVI were then established and were shown to satisfactorily evaluate prognosis and have a great discriminatory power, respectively. Conclusion: This MVI grading system could precisely evaluate prognosis of HCC patients after liver resection with curative intent and it could be employed in routine pathological reports. The severity of MVI from both adjacent and distant from tumor boundary should be stated. A hypothesis about two occurrence modes of distal MVI was proposed.

3.
Sci Rep ; 8(1): 14927, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297787

RESUMO

The incidence of inflammatory bowel disease (IBD) has markedly increased. Our research findings during the past showed that medicinal plant extracts and the derived phytochemical components from Wedelia chinensis (WC) can have strong anti-colitis activities. Here, we further identified the key component phytochemicals from active fractions of different WC preparations (WCHA) that are responsible for the protective effect of WCHA in colitis mice. Of the 3 major compounds (wedelolactone, luteolin and apigenin) in this fraction, luteolin had the highest anti-inflammatory effect in vivo. Using a next-generation sequencing (NGS) (e.g., RNA-seq) system to analyze the transcriptome of colorectal cells/tissues in mice with dextran sulfate sodium (DSS)-induced colitis with/without phytochemicals treatment, luteolin was found to strongly suppress the DSS-activated IL-17 pathway in colon tissue. In addition, co-treatment with wedelolactone and luteolin had a synergistic effect on the expression level of some IL-17 pathway-related genes. Interestingly, our NGS analyses also indicated that luteolin and wedelolactone can specifically suppress the expression of NLRP3 and NLRP1. Using a 3-dimensional cell co-culture system, we further demonstrated that luteolin could efficiently suppress NLRP3 expression via disruption of IL-17A signaling in inflamed colon tissue, which also indicates the pharmacological potential of luteolin and wedelolactone in treating IBD.


Assuntos
Colite/genética , Perfilação da Expressão Gênica , Interleucina-17/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Wedelia/química , Células 3T3 , Doença Aguda , Processamento Alternativo/genética , Animais , Colite/patologia , Colo/patologia , Cumarínicos/farmacologia , Sulfato de Dextrana , Retroalimentação Fisiológica , Inflamassomos/metabolismo , Interleucina-17/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Luteolina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
5.
Front Pharmacol ; 8: 386, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674499

RESUMO

Phytochemicals or their derived compounds are being increasingly recognized as potentially potent complementary treatments for cancer. Among them, some phytochemicals are being actively evaluated for use as adjuvants in anticancer therapies. For instance, shikonin and hypericin were found to induce immunogenic cell death of specific cancer cells, and this effect was able to further activate the recognition activity of tumor cells by the host immune system. On the other hand, some derivatives of phytochemicals, such as dihydrobenzofuran lignan (Q2-3) have been found to induce the secretion of an endogenous anticancer factor, namely IL-25, from non-malignant cells. These findings suggest that phytochemicals or their derivatives confer a spectrum of different pharmacological activities, which contrasts with the current cytotoxic anticancer drugs commonly used in clinics. In this review, we have collected together pertinent information from recent studies about the biochemical and cellular mechanisms through which specific phytochemicals regulate target immune systems in defined tumor microenvironments. We have further highlighted the potential application of these immunotherapeutic modifiers in cell-based cancer vaccine systems. This knowledge provides useful technological support and know how for future applications of phytochemicals in cancer immunotherapy.

7.
Oncotarget ; 7(28): 43629-43653, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27248319

RESUMO

Immunogenic cell death (ICD) of tumor cells occurs via various pathways that activate immune cell systems against cancer. Previous studies have demonstrated that shikonin (SK), a plant secondary metabolite, can confer strong pharmacological activities that activate ICD and strong immunogenicity of tumor cells. However, the exact hierarchical regulatory mechanisms including the molecular targets of SK-activated immunogenicity are still unknown. Here, the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) was revealed to serve as a specific protein target for SK. This binding plays a key role in SK-stimulated ICD activity and the suppression of post-transcriptional mRNA processing, including nuclear export activity of newly synthesized mRNAs in mammary carcinoma cells in vitro. Moreover, it also mechanistically mediates the anti-metastatic effect of a tumor cell lysate (TCL) vaccine, which can be readily generated from SK-treated 4T1 tumor cells (SK-TCL), and the derived tumor-immunogenicity of SK-TCL-treated dendritic cells in vivo. Together, the identification of hnRNPA1 as the intracellular molecular target provides compelling pharmacology-based knowledge for the potential clinical use of SK-induced immunogenicity. In addition, SK may also serve as a potent suppressor that interferes with specific post-transcriptional activities, a mechanism which may be useful for exploitation in cancer therapeutics.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/imunologia , Neoplasias da Mama/terapia , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Naftoquinonas/uso terapêutico , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Animais , Antineoplásicos/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Feminino , Ribonucleoproteína Nuclear Heterogênea A1/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Naftoquinonas/imunologia , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nat Commun ; 7: 11311, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27089063

RESUMO

Tumour-associated fibroblasts (TAFs), as a functionally supportive microenvironment, play an essential role in tumour progression. Here we investigate the role of IL-25, an endogenous anticancer factor secreted from TAFs, in suppression of mouse 4T1 mammary tumour metastasis. We show that a synthetic dihydrobenzofuran lignan (Q2-3), the dimerization product of plant caffeic acid methyl ester, suppresses 4T1 metastasis by increasing fibroblastic IL-25 activity. The secretion of IL-25 from treated human or mouse fibroblasts is enhanced in vitro, and this activity confers a strong suppressive effect on growth activity of test carcinoma cells. Subsequent in vivo experiments showed that the anti-metastatic effects of Q2-3 on 4T1 and human MDA-MD-231 tumour cells are additive when employed in combination with the clinically used drug, docetaxel. Altogether, our findings reveal that the release of IL-25 from TAFs may serve as a check point for control of mammary tumour metastasis and that phytochemical Q2-3 can efficiently promote such anticancer activities.


Assuntos
Neoplasias da Mama/metabolismo , Fibroblastos/metabolismo , Interleucinas/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Células 3T3 , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Lignanas/química , Lignanas/farmacologia , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Metástase Neoplásica , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Artigo em Inglês | MEDLINE | ID: mdl-26557148

RESUMO

Bidens pilosa, a medicinal herb worldwide, is rich in bioactive polyynes. In this study, by using high resolution 2-dimensional gel electrophoresis coupled with mass spectrometry analysis, as many as 2000 protein spots could be detected and those whose expression was specifically up- or downregulated in Jurkat T cells responsive to the treatment with 2-ß-D-glucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne (GHTT) can be identified. GHTT treatment can upregulate thirteen proteins involved in signal transduction, detoxification, metabolism, energy pathways, and channel transport in Jurkat cells. Nine proteins, that is, thioredoxin-like proteins, BH3 interacting domain death agonist (BID protein involving apoptosis), methylcrotonoyl-CoA carboxylase beta chain, and NADH-ubiquinone oxidoreductase, were downregulated in GHTT-treated Jurkat cells. Further, bioinformatics tool, Ingenuity software, was used to predict signaling pathways based on the data obtained from the differential proteomics approach. Two matched pathways, relevant to mitochondrial dysfunction and apoptosis, in Jurkat cells were inferred from the proteomics data. Biochemical analysis further verified both pathways involving GHTT in Jurkat cells. These findings do not merely prove the feasibility of combining proteomics and bioinformatics methods to identify cellular proteins as key players in response to the phytocompound in Jurkat cells but also establish the pathways of the proteins as the potential therapeutic targets of leukemia.

10.
PLoS One ; 10(10): e0138335, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426423

RESUMO

Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Sirolimo/efeitos adversos , Adulto , Animais , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Naftoquinonas/efeitos adversos , Metástase Neoplásica , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Adulto Jovem
11.
Mol Cancer ; 14: 174, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26403780

RESUMO

BACKGROUND: The tumor cell lysate-pulsed, dendritic cell (DC)-based cancer vaccine approaches are being actively evaluated for application to cancer immunotherapy, hopefully at a personalized medicine base. There is apparently an emerging technical problem however, the lack of highly efficacious potency in activation of patient's DCs for T-cell priming and the associated process for presenting tumor immunogenicity. METHODS: One strategy to address this is to consider the manipulation of the tumor immunogenic cells death (ICD) complex ex-vivo for maximal activation of DC efficacy. In our previous study we showed that phytochemical shikonin (SK) can drastically enhance ICD activity in mouse tumor cells treated ex-vivo, and the resultant tumor cell lysate (TCL) can effectively augment such SK-TCL pulsed DC vaccine activity in vivo in anti-tumor activities. In this study, we investigated the specifics and the multi-functional effects of various damaged associated molecular pattern (DAMP) components of the ICD complex for their participation, roles and potential cross talks in activating DCs, as measured by five different functional assays. RESULTS: Among three DAMPs tested, HSP70 and CRT mediate a key role in SK-TCL-induced DC immunity for both CD4(+) and CD8(+) T cell proliferations in vitro. HSP70 is the most important component, followed by CRT, then HMGB1 in facilitating DC immunity on suppressing metastasis of mouse 4 T1 mammary tumors and prolonging survival in test mice. Only HSP70, but not CRT or HMGB1, is effective for the suppression of both granulocytic and monocytic MDSC populations in vivo. Both HSP70 and HMGB1, but not CRT, are essential in activating the expression of three key ICD molecules-associated receptors on test DCs. Each of the three test ICD proteins can exhibit a distinguishable pattern in stimulating the expression of four key chemokines in test DCs. CONCLUSION: Our findings on the differential roles or effect of various ICD components in activating vaccinated DCs may help formulate new strategies for future cancer vaccine designs.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Imunoterapia , Melanoma Experimental/imunologia , Naftoquinonas/administração & dosagem , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Proteína HMGB1/genética , Proteína HMGB1/imunologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/imunologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Melanoma Experimental/genética , Melanoma Experimental/prevenção & controle , Melanoma Experimental/terapia , Camundongos , Medicina de Precisão , Linfócitos T/imunologia
12.
PLoS One ; 10(3): e0122374, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25825910

RESUMO

Dendritic cell (DC) vaccines are a newly emerging immunotherapeutic approach for the treatment and prevention of cancer, but major challenges still remain particularly with respect to clinical efficacy. Engineering and optimization of adjuvant formulations for DC-based vaccines is one strategy through which more efficacious treatments may be obtained. In this study, we developed a new ex vivo approach for DC vaccine preparation. We evaluated two highly purified mixed polysaccharide fractions from the root of Astragalus membranaceus and Codonopsis pilosulae, named Am and Cp, for their use in enhancing the efficiency of a DC-based cancer vaccine against metastasis of 4T1 mammary carcinoma in mice. Mixed lymphocyte reaction showed all Am-, Cp- and [Am+Cp]-treated DCs enhanced mouse CD4+ and CD8+ T-cell proliferation. [Am+Cp]-treated DCs exhibited the strongest anti-4T1 metastasis activity in test mice. Treatments with Am, Cp and [Am+Cp] also resulted in augmented expression of CD40, CD80 and CD86 markers in test DCs. Bioinformatics analysis of the cytokine array data from treated DCs identified that [Am+Cp] is efficacious in activation of specific immune functions via mediating the expression of cytokines/chemokines involved in the recruitment and differentiation of defined immune cells. Biochemical analysis revealed that Am and Cp are composed mainly of polysaccharides containing a high level (70-95%) glucose residues, but few or no (< 1%) mannose residues. In summary, our findings suggest that the specific plant polysaccharides Am and Cp extracted from traditional Chinese medicines can be effectively used instead of bacterial LPS as a potent adjuvant in the formulation of a DC-based vaccine for cancer immunotherapies.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Neoplasias Mamárias Experimentais/patologia , Metástase Neoplásica/prevenção & controle , Plantas Medicinais/química , Polissacarídeos/farmacologia , Animais , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Neoplasias Mamárias Experimentais/cirurgia , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/isolamento & purificação , Linfócitos T/citologia , Linfócitos T/imunologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-23935688

RESUMO

Dioscorea tuber phytoextracts can confer immunomodulatory activities ex vivo and improve regeneration of bone marrow cells in vivo. In present study, we evaluated specific Dioscorea phytoextracts for use ex vivo as a bone-marrow-derived dendritic cell- (DC-) based vaccine adjuvant for cancer immunotherapy. Fractionated Dioscorea extracts (DsII) were assayed for their effect on maturation and functions of DC ex vivo and antimelanoma activity of DC-based vaccine in vivo. The phytoextract from 50-75% ethanol-precipitated fraction of Dioscorea alata var. purpurea Tainung no. 5 tuber, designated as DsII-TN5, showed a strong augmentation of tumor cell lysate- (TCL-) loaded DC-mediated activation of T-cell proliferation. DsII-TN5 stimulated the expression of CD40, CD80, CD86, and IL-1 ß in TCL-loaded DCs and downregulated the expression of TGF- ß 1. DC vaccines prepared by a specific schema (TCL (2 h) + LPS (22 h)) showed the strongest antitumor activity. DsII-TN5 as a DC vaccine adjuvant showed strong antimelanoma activity and reduced myeloid-derived suppressor cell (MDSC) population in tested mice. DsII-TN5 can also activate DCs to enhance Th1- and Th17-related cytokine expressions. Biochemical analysis showed that DsII-TN5 consists mainly of polysaccharides containing a high level (53%) of mannose residues. We suggest that DsII-TN5 may have potential for future application as a potent, cost-effective adjuvant for DC-based cancer vaccines.

14.
Artigo em Inglês | MEDLINE | ID: mdl-23956768

RESUMO

Medicinal herbs and their derivative phytocompounds are being increasingly recognized as useful complementary treatments for cancer. A large volume of clinical studies have reported the beneficial effects of herbal medicines on the survival, immune modulation, and quality of life (QOL) of cancer patients, when these herbal medicines are used in combination with conventional therapeutics. Here, we briefly review some examples of clinical studies that investigated the use of herbal medicines for various cancers and the development of randomized controlled trials (RCTs) in this emerging research area. In addition, we also report recent studies on the biochemical and cellular mechanisms of herbal medicines in specific tumor microenvironments and the potential application of specific phytochemicals in cell-based cancer vaccine systems. This review should provide useful technological support for evidence-based application of herbal medicines in cancer therapy.

15.
Artigo em Inglês | MEDLINE | ID: mdl-23861701

RESUMO

Although various pharmacological activities of the shikonins have been documented, understanding the hierarchical regulation of these diverse bioactivities at the genome level is unsubstantiated. In this study, through cross examination between transcriptome and microRNA array analyses, we predicted that topical treatment of shikonin in vivo affects epithelial-mesenchymal transition (EMT) and the expression of related microRNAs, including 200a, 200b, 200c, 141, 205, and 429 microRNAs, in mouse skin tissues. In situ immunohistological analyses further demonstrated that specific EMT regulatory molecules are enhanced in shikonin-treated epidermal tissues. RT-PCR analyses subsequently confirmed that shikonin treatment downregulated expression of microRNA-205 and other members of the 200 family microRNAs. Further, expression of two RNA targets of the 200 family microRNAs in EMT regulation, Sip1 (Zeb2) and Tcf8 (Zeb1), was consistently upregulated by shikonin treatment. Enhancement of these EMT activities was also detected in shikonin-treated wounds, which repaired faster than controls. These results suggest that topical treatment with shikonin can confer a potent stimulatory effect on EMT and suppress the expression of the associated microRNAs in skin wound healing. Collectively, these cellular and molecular data provide further evidence in support of our previous findings on the specific pharmacological effects of shikonin in wound healing and immune modulation.

16.
Methods Mol Biol ; 940: 133-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23104339

RESUMO

A nonviral method for gene transfer into mammalian cells has been developed using physical force which accelerates plasmid DNA-coated gold particles to high -speed and penetrate the mammalian cells. This technology of gene transfer via a biolistic transfection method has been shown to have multiple applications to mammalian gene transfer systems. This method has also been adapted for delivery of other macromolecules like RNA, microRNA, and proteins. A broad range of somatic cell types, including primary cell cultures and established cell lines, have been successfully transfected ex vivo or in vitro by using the gene gun technology, either as suspension or adherent cells in cultures. This chapter describes the general procedures for in vitro DNA transfection by particle-mediated delivery to nonadherent and adherent cells. These procedures can be readily employed by using the Helios gene gun system (Bio-Rad, Hercules, CA) based on the Accell design.


Assuntos
Biolística/instrumentação , Melanoma Experimental/genética , Melanoma Experimental/patologia , Transfecção/instrumentação , Animais , Adesão Celular , DNA/administração & dosagem , DNA/química , DNA/genética , Citometria de Fluxo , Ouro/química , Humanos , Camundongos , Microesferas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Pele/metabolismo , Transgenes/genética , Células Tumorais Cultivadas
17.
Exp Cell Res ; 317(15): 2210-21, 2011 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-21741972

RESUMO

Mouse bone marrow-derived dendritic cells (BMDCs) are being employed as an important model for translational research into the development of DC-based therapeutics. For such use, the localization and specialized mobility of injected BMDCs within specific immune tissues are known to define their immunity and usefulness in vivo. In this study, we demonstrate that IL-4, a key driving factor for in vitro propagation and differentiation of BMDCs, when added during a late culture stage can enhance the in vivo trafficking activity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced BMDCs. It suggests that the temporal control of IL-4 stimulation during the in vitro generation of DCs drastically affects the DC trafficking efficiency in vivo. With this modification of IL-4 stimulation, we also show that much less cytokine was needed to generate BMDCs with high purity and yield that secrete a high level of cytokines and possess a good capacity to induce proliferation of allogeneic CD4+ T cells, as compared to the conventional method that uses a continuous supplement of GM-CSF and IL-4 throughout cultivation. These results provide us with an important know-how for differentiation of BMDCs from myeloid stem cells, and for use of other immune cells in related medical or stem cell applications.


Assuntos
Diferenciação Celular , Células Dendríticas/citologia , Interleucina-4/farmacologia , Animais , Movimento Celular , Células Cultivadas , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Camundongos
18.
BMC Genomics ; 11: 612, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21040561

RESUMO

BACKGROUND: Several Echinacea species have been used as nutraceuticals or botanical drugs for "immunostimulation", but scientific evidence supporting their therapeutic use is still controversial. In this study, a phytocompound mixture extracted from the butanol fraction (BF) of a stem and leaf (S+L) extract of E. purpurea ([BF/S+L/Ep]) containing stringently defined bioactive phytocompounds was obtained using standardized and published procedures. The transcriptomic and proteomic effects of this phytoextract on mouse bone marrow-derived dendritic cells (BMDCs) were analyzed using primary cultures. RESULTS: Treatment of BMDCs with [BF/S+L/Ep] did not significantly influence the phenotypic maturation activity of dendritic cells (DCs). Affymetrix DNA microarray and bioinformatics analyses of genes differentially expressed in DCs treated with [BF/S+L/Ep] for 4 or 12 h revealed that the majority of responsive genes were related to cell adhesion or motility (Cdh10, Itga6, Cdh1, Gja1 and Mmp8), or were chemokines (Cxcl2, Cxcl7) or signaling molecules (Nrxn1, Pkce and Acss1). TRANSPATH database analyses of gene expression and related signaling pathways in treated-DCs predicted the JNK, PP2C-α, AKT, ERK1/2 or MAPKAPK pathways as the putative targets of [BF/S+L/Ep]. In parallel, proteomic analysis showed that the expressions of metabolic-, cytoskeleton- or NF-κB signaling-related proteins were regulated by treatment with [BF/S+L/Ep]. In vitro flow cytometry analysis of chemotaxis-related receptors and in vivo cell trafficking assay further showed that DCs treated with [BF/S+L/Ep] were able to migrate more effectively to peripheral lymph node and spleen tissues than DCs treated as control groups. CONCLUSION: Results from this study suggest that [BF/S+L/Ep] modulates DC mobility and related cellular physiology in the mouse immune system. Moreover, the signaling networks and molecules highlighted here are potential targets for nutritional or clinical application of Echinacea or other candidate medicinal plants.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Echinacea/química , Genoma/genética , Extratos Vegetais/farmacologia , Proteômica/métodos , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Dendríticas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores Imunológicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Extratos de Tecidos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...