Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 468, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745142

RESUMO

BACKGROUND: Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. RESULTS: Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. CONCLUSIONS: These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.


Assuntos
Eriobotrya , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Eriobotrya/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Cromossomos de Plantas/genética
2.
PLoS One ; 19(4): e0299261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635506

RESUMO

'Allen Eureka' is a bud variety of Eureka lemon with excellent fruiting traits, but severe winter defoliation affects the following year's yield, and the response mechanism of lemon defoliation is currently unknown. Two lemon cultivars ('Allen Eureka' and 'Yunning No. 1') with different defoliation traits were used as materials to investigate the molecular regulatory mechanisms of different leaf abscission periods in lemons. The petiole abscission zone was collected at three different defoliation stages, namely, the predefoliation stage (k15), the middefoliation stage (k30), and the postdefoliation stage (k45). Transcriptome sequencing was performed to analyze the gene expression differences between these two cultivars. A total of 1141, 2695, and 1433 differentially expressed genes (DEGs) were obtained in k15, k30, and k45, respectively, and the number of DEGs in k30 was the largest. GO analysis revealed that the DEGs between the two cultivars were mainly enriched in processes related to hydrolase activity, chitinase activity, oxidoreductase activity, and transcription regulator activity in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in k30, which involved plant hormone signal transduction, phenylpropanoid biosynthesis, and biosynthesis of amino acids. The expression trends of some DEGs suggested their roles in regulating defoliation in Lemon. Seven genes were obtained by WGCNA, including sorbitol dehydrogenase (CL9G068822012_alt, CL9G068820012_alt, CL9G068818012_alt), abscisic acid 8'-hydroxylase (CL8G064053012_alt, CL8G064054012_alt), and asparagine synthetase (CL8G065162012_alt, CL8G065151012_alt), suggesting that these genes may be involved in the regulation of lemon leaf abscission.


Assuntos
Secas , Transcriptoma , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo
3.
PeerJ ; 12: e17218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685937

RESUMO

'Allen Eureka' is a bud variety of Eureka lemon with excellent fruiting traits. However, it suffers from severe winter defoliation that leads to a large loss of organic nutrients and seriously affects the tree's growth and development as well as the yield of the following year, and the mechanism of its response to defoliation is still unclear. In order to investigate the molecular regulatory mechanisms of different leaf abscission periods in lemon, two lemon cultivars ('Allen Eureka' and 'Yunning No. 1') with different defoliation traits were used as materials. The petiole abscission zone (AZ) was collected at three different defoliation stages, namely, the pre-defoliation stage (CQ), the mid-defoliation stage (CZ), and the post-defoliation stage (CH). Transcriptome sequencing was performed to analyze the gene expression differences between these two cultivars. A total of 898, 4,856, and 3,126 differentially expressed genes (DEGs) were obtained in CQ, CZ, and CH, respectively, and the number of DEGs in CZ was the largest. GO analysis revealed that the DEGs between the two cultivars were mainly enriched in processes related to oxidoreductase, hydrolase, DNA binding transcription factor, and transcription regulator activity in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in CZ and involved plant hormone signal transduction, phenylpropanoid biosynthesis, glutathione metabolism, and alpha-linolenic acid metabolism. The expression trends of some DEGs suggested their roles in regulating defoliation in lemon. Eight gene families were obtained by combining DEG clustering analysis and weighted gene co-expression network analysis (WGCNA), including ß-glucosidase, AUX/IAA, SAUR, GH3, POD, and WRKY, suggesting that these genes may be involved in the regulation of lemon leaf abscission. The above conclusions enrich the research related to lemon leaf abscission and provide reliable data for the screening of lemon defoliation candidate genes and analysis of defoliation pathways.


Assuntos
Citrus , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Transcriptoma , Citrus/genética , Citrus/metabolismo , Citrus/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
PeerJ ; 12: e17001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436028

RESUMO

The risk of pathogenic bacterial invasion in plantations has increased dramatically due to high environmental climate change and has seriously affected sweet orange fruit quality. MADS genes allow plants to develop increased resistance, but functional genes for resistance associated with pathogen invasion have rarely been reported. MADS gene expression profiles were analyzed in sweet orange leaves and fruits infested with Lecanicillium psalliotae and Penicillium digitatum, respectively. Eighty-two MADS genes were identified from the sweet orange genome, and they were classified into five prime subfamilies concerning the Arabidopsis MADS gene family, of which the MIKC subfamily could be subdivided into 13 minor subfamilies. Protein structure analysis showed that more than 93% of the MADS protein sequences of the same subfamily between sweet orange and Arabidopsis were very similar in tertiary structure, with only CsMADS8 and AG showing significant differences. The variability of MADS genes protein structures between sweet orange and Arabidopsis subgroups was less than the variabilities of protein structures within species. Chromosomal localization and covariance analysis showed that these genes were unevenly distributed on nine chromosomes, with the most genes on chromosome 9 and the least on chromosome 2, with 36 and two, respectively. Four pairs of tandem and 28 fragmented duplicated genes in the 82 MADS gene sequences were found in sweet oranges. GO (Gene Ontology) functional enrichment and expression pattern analysis showed that the functional gene CsMADS46 was strongly downregulated of sweet orange in response to biotic stress adversity. It is also the first report that plants' MADS genes are involved in the biotic stress responses of sweet oranges. For the first time, L. psalliotae was experimentally confirmed to be the causal agent of sweet orange leaf spot disease, which provides a reference for the research and control of pathogenic L. psalliotae.


Assuntos
Arabidopsis , Citrus sinensis , Humanos , Citrus sinensis/genética , Arabidopsis/genética , Sequência de Aminoácidos , Bactérias , Doces
5.
BMC Genomics ; 25(1): 12, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166720

RESUMO

BACKGROUND: GRAS is a family of plant-specific transcription factors (TFs) that play a vital role in plant growth and development and response to adversity stress. However, systematic studies of the GRAS TF family in kiwifruit have not been reported. RESULTS: In this study, we used a bioinformatics approach to identify eighty-six AcGRAS TFs located on twenty-six chromosomes and phylogenetic analysis classified them into ten subfamilies. It was found that the gene structure is relatively conserved for these genes and that fragmental duplication is the prime force for the evolution of AcGRAS genes. However, the promoter region of the AcGRAS genes mainly contains cis-acting elements related to hormones and environmental stresses, similar to the results of GO and KEGG enrichment analysis, suggesting that hormone signaling pathways of the AcGRAS family play a vital role in regulating plant growth and development and adversity stress. Protein interaction network analysis showed that the AcGRAS51 protein is a relational protein linking DELLA, SCR, and SHR subfamily proteins. The results demonstrated that 81 genes were expressed in kiwifruit AcGRAS under salt stress, including 17 differentially expressed genes, 13 upregulated, and four downregulated. This indicates that the upregulated AcGRAS55, AcGRAS69, AcGRAS86 and other GRAS genes can reduce the salt damage caused by kiwifruit plants by positively regulating salt stress, thus improving the salt tolerance of the plants. CONCLUSIONS: These results provide a theoretical basis for future exploration of the characteristics and functions of more AcGRAS genes. This study provides a basis for further research on kiwifruit breeding for resistance to salt stress. RT-qPCR analysis showed that the expression of 3 AcGRAS genes was elevated under salt stress, indicating that AcGRAS exhibited a specific expression pattern under salt stress conditions.


Assuntos
Genoma de Planta , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Tolerância ao Sal
6.
Nat Commun ; 14(1): 2391, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100817

RESUMO

Global agricultural trade creates multiple telecoupled flows of nitrogen (N) and phosphorus (P). The flows of physical and virtual nutrients along with trade have discrepant effects on natural resources in different countries. However, existing literature has not quantified or analyzed such effects yet. Here we quantified the physical and virtual N and P flows embedded in the global agricultural trade networks from 1997 to 2016 and elaborated components of the telecoupling framework. The N and P flows both increased continuously and more than 25% of global consumption of nutrients in agricultural products were related to physical nutrient flows, while virtual nutrient flows were equivalent to one-third of the nutrients inputs into global agricultural system. These flows have positive telecoupling effects on saving N and P resources at the global scale. Reducing inefficient trade flows will enhance resource conservation, environmental sustainability in the hyper-globalized world.

7.
Curr Issues Mol Biol ; 45(2): 1250-1271, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36826027

RESUMO

WRKY transcription factors (TFs) play a vital role in plant stress signal transduction and regulate the expression of various stress resistance genes. Sweet orange (Citrus sinensis) accounts for a large proportion of the world's citrus industry, which has high economic value, while Penicillium digitatum is a prime pathogenic causing postharvest rot of oranges. There are few reports on how CsWRKY TFs play their regulatory roles after P. digitatum infects the fruit. In this study, we performed genome-wide identification, classification, phylogenetic and conserved domain analysis of CsWRKY TFs, visualized the structure and chromosomal localization of the encoded genes, explored the expression pattern of each CsWRKY gene under P. digitatum stress by transcriptome data, and made the functional prediction of the related genes. This study provided insight into the characteristics of 47 CsWRKY TFs, which were divided into three subfamilies and eight subgroups. TFs coding genes were unevenly distributed on nine chromosomes. The visualized results of the intron-exon structure and domain are closely related to phylogeny, and widely distributed cis-regulatory elements on each gene played a global regulatory role in gene expression. The expansion of the CSWRKY TFs family was probably facilitated by twenty-one pairs of duplicated genes, and the results of Ka/Ks calculations indicated that this gene family was primarily subjected to purifying selection during evolution. Our transcriptome data showed that 95.7% of WRKY genes were involved in the transcriptional regulation of sweet orange in response to P. digitatum infection. We obtained 15 differentially expressed genes and used the reported function of AtWRKY genes as references. They may be involved in defense against P. digitatum and other pathogens, closely related to the stress responses during plant growth and development. Two interesting genes, CsWRKY2 and CsWRKY14, were expressed more than 60 times and could be used as excellent candidate genes in sweet orange genetic improvement. This study offers a theoretical basis for the response of CSWRKY TFs to P. digitatum infection and provides a vital reference for molecular breeding.

8.
Gene ; 854: 147117, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36526123

RESUMO

BACKGROUND: The NBS-LRR (nucleotide-binding site-leucine-rich repeat gene) gene family, known as the plant R (resistance) gene family with the most members, plays a significant role in plant resistance to various external adversity stresses. The NBS-LRR gene family has been researched in many plant species. Citrus is one of the most vital global cash crops, the number one fruit group, and the third most traded agricultural product world wild. However, as one of the largest citrus species, a comprehensive study of the NBS-LRR gene family has not been reported on sweet oranges. METHODS: In this study, NBS-LRR genes were identified from the Citrus sinensis genome (v3.0), with a comprehensive analysis of this gene family performed, including phylogenetic analysis, gene structure, cis-acting element of a promoter, and chromosomal localization, among others. The expression pattern of NBS-LRR genes was analyzed when sweet orange fruits were infected by Penicillium digitatum, employing experimental data from our research group. It first reported the expression patterns of NBS-LRR genes under abiotic stresses, using three transcript data from NCBI (National Center for Biotechnology Information). RESULTS: In this study, 111 NBS-LRR genes were identified in the C. sinensis genome (v3.0) and classified into seven subfamilies according to their N-terminal and C-terminal domains. The phylogenetic tree results indicate that genes containing only the NBS structural domain are more ancient in the sweet orange NBS-LRR gene family. The chromosome localization results showed that 111 NBS-LRR genes were distributed unevenly on nine chromosomes, with the most genes distributed on chromosome 1. In addition, we identified a total of 18 tandem duplication gene pairs in the sweet orange NBS-LRR gene family, and based on the Ka/Ks ratio, all of the tandem duplication genes underwent purifying selection. Transcriptome data analysis showed a significant number of NBS-LRR genes expressed under biotic and abiotic stresses, and some reached significantly different levels of expression. It indicates that the NBS-LRR gene family is vital in resistance to biotic and abiotic stresses in sweet oranges. CONCLUSION: Our study provides the first comprehensive framework on the NBS-LRR family of genes, which provides a basis for further in-depth studies on the biological functions of NBS-LRR in growth, development, and response to abiotic stresses in sweet orange.


Assuntos
Citrus sinensis , Citrus , Proteínas de Plantas/metabolismo , Citrus sinensis/genética , Filogenia , Família Multigênica , Genes de Plantas , Citrus/genética , Genoma de Planta
9.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203426

RESUMO

Paeonia delavayi var. lutea, Paeonia delavayi var. angustiloba, and Paeonia ludlowii are Chinese endemics that belong to the Paeoniaceae family and have vital medicinal and ornamental value. It is often difficult to classify Paeoniaceae plants based on their morphological characteristics, and the limited genomic information has strongly hindered molecular evolution and phylogenetic studies of Paeoniaceae. In this study, we sequenced, assembled, and annotated the chloroplast genomes of P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii. The chloroplast genomes of these strains were comparatively analyzed, and their phylogenetic relationships and divergence times were inferred. These three chloroplast genomes exhibited a typical quadripartite structure and were 152,687-152,759 bp in length. Each genome contains 126-132 genes, including 81-87 protein-coding genes, 37 transfer RNAs, and 8 ribosomal RNAs. In addition, the genomes had 61-64 SSRs, with mononucleotide repeats being the most abundant. The codon bias patterns of the three species tend to use codons ending in A/U. Six regions of high variability were identified (psbK-psbL, trnG-UCC, petN-psbM, psbC, rps8-rpl14, and ycf1) that can be used as DNA molecular markers for phylogenetic and taxonomic analysis. The Ka/Ks ratio indicates positive selection for the rps18 gene associated with self-replication. The phylogenetic analysis of 99 chloroplast genomes from Saxifragales clarified the phylogenetic relationships of Paeoniaceae and revealed that P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii are monophyletic groups and sisters to P. delavayi. Divergence time estimation revealed two evolutionary divergences of Paeoniaceae species in the early Oligocene and Miocene. Afterward, they underwent rapid adaptive radiation from the Pliocene to the early Pleistocene when P. delavayi var. lutea, P. delavayi var. angustiloba, and P. ludlowii formed. The results of this study enrich the chloroplast genomic information of Paeoniaceae and reveal new insights into the phylogeny of Paeoniaceae.


Assuntos
Benzenossulfonatos , Genoma de Cloroplastos , Magnoliopsida , Paeonia , Saxifragales , Filogenia , Evolução Biológica
10.
PeerJ ; 10: e14251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312747

RESUMO

Background: The rubber tree (Hevea brasiliensis) is the only species capable of producing high-quality natural rubber for commercial use, and is often subjected to various abiotic stresses in non-traditional rubber plantation areas. Superoxide dismutase (SOD) is a vital metalloenzyme translated by a SOD gene family member and acts as a first-line of protection in plant cells by catalysing the disproportionation of reactive oxygen species (ROS) to produce H2O2 and O2. However, the SOD gene family is not reported in rubber trees. Methods: Here, we used hidden markov model (HMM) and BLASTP methods to identify SOD genes in the H. brasiliensis genome. Phylogenetic tree, conserved motifs, gene structures, cis elements, and gene ontology annotation (GO) analyses were performed using MEGA 6.0, MEME, TBtools, PlantCARE, and eggNOG database, respectively. HbSOD gene expression profiles were analysed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results: We identified nine HbSOD genes in the rubber tree genome, including five HbCSDs, two HbFSDs, and two HbMSDs. Phylogenetic relationship analysis classified the SOD proteins from the rubber tree and other related species into three subfamilies. The results of gene structure and conserved motif analysis illustrated that most HbSOD genes have similar exon-intron numbers and conserved motifs in the same evolutionary branch. Five hormone-related, four stress-related, and light-responsive elements were detected in the HbSODs' promoters. HbSODs were expressed in different tissues, gradually increased with leaf development, and were abundantly expressed in mature leaves. HbCSD2 and HbCSD4 was significantly upregulated under low and high temperatures, and salt stress, except for HbCSD2, by heat. Furthermore, most HbSOD genes were significantly upregulated by drought, except HbMSD2. These findings imply that these genes may play vital roles in rubber tree stress resistance. Our results provide a basis for further studies on the functions of HbSOD genes in rubber trees and stress response mechanisms.


Assuntos
Hevea , Hevea/genética , Filogenia , Peróxido de Hidrogênio , Estresse Fisiológico/genética , Superóxido Dismutase/genética
11.
Cells ; 11(4)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35203287

RESUMO

Saccharomyces uvarum is one of the few fermentative species that can be used in winemaking, but its weak sulfite tolerance is the main reason for its further use. Previous studies have shown that the expression of the methionine synthase gene (MET4) is upregulated in FZF1 (a gene encoding a putative zinc finger protein, which is a positive regulator of the transcription of the cytosolic sulfotransferase gene SSU1) overexpression transformant strains, but its exact function is unknown. To gain insight into the function of the MET4 gene, in this study, a MET4 overexpression vector was constructed and transformed into S. uvarum strain A9. The MET4 transformants showed a 20 mM increase in sulfite tolerance compared to the starting strain. Ninety-two differential genes were found in the transcriptome of A9-MET4 compared to the A9 strain, of which 90 were upregulated, and two were downregulated. The results of RT-qPCR analyses confirmed that the expression of the HOMoserine requiring gene (HOM3) in the sulfate assimilation pathway and some fermentation-stress-related genes were upregulated in the transformants. The overexpression of the MET4 gene resulted in a significant increase in sulfite tolerance, the upregulation of fermentation-stress-related gene expression, and significant changes in the transcriptome profile of the S. uvarum strain.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas Fúngicas , Saccharomyces , Sulfitos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Sulfitos/metabolismo , Regulação para Cima
12.
Biomed Phys Eng Express ; 7(6)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34438372

RESUMO

Attenuation correction of annihilation photons is essential in PET image reconstruction for providing accurate quantitative activity maps. In the absence of an aligned CT device to obtain attenuation information, we propose the high-resolution residual U-net (HRU-Net) to extract attenuation correction factors (ACF) directly from time-of-flight (TOF) PET emission data. HRU-Net is built upon the U-Net encoding-decoding architecture and it utilizes four blocks of modified residual connections in each stage. In each residual block, concatenation is performed to incorporate input and output feature vectors. In addition, flexible and efficient elements of convolutional neural network (CNN) such as dilated convolutions, pre-activation order of a batch normalization (BN) layer, a rectified linear unit (ReLU) layer and a convolution layer, and residual connections are utilized to extract high resolution features. To illustrate the effectiveness of the proposed method, HRU-Net estimated ACF, attenuation maps and activity maps are compared with maximum likelihood ACF (MLACF) algorithm, U-Net, and HC-Net. An ablation study is conducted using non-TOF and TOF sinograms as inputs of networks. The experimental results show that HRU-Net with TOF projections as inputs leads to normalized root mean square error (NRMSE) of 4.84% ± 1.58%, outperforming MLACF, U-Net and HC-Net with NRMSE of 47.82% ± 13.62%, 6.92% ± 1.94%, and 7.99% ± 2.49%, respectively.


Assuntos
Tomografia por Emissão de Pósitrons , Algoritmos , Redes Neurais de Computação
13.
Foods ; 10(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34441635

RESUMO

Food consumption is closely associated with resource consumption and environmental sustainability. An unreasonable dietary pattern would cause great pressure or damage to resources and the environment. It is particularly important to reduce the negative impact of household food consumption on resources and the environment while simultaneously ensuring people's nutrient intake and health. This study applied the China Health and Nutrition Survey (CHNS) database to quantitatively study the spatial-temporal analysis of multiple footprints of household food consumption at multiple scales and explored the driving mechanism of the multiple footprints. The results showed that, except land footprint (LF), the other four types of footprints all decreased at varying degrees; the water footprint (WF), carbon footprint (CF), nitrogen footprint (NF) and energy footprint (EF) decreased by 18.24%, 17.82%, 12.03% and 20.36%, respectively, from 2000 to 2011; multiple footprints of food consumption of household in Guizhou was the highest among the 12 provinces involved in the study; this shows that resource consumption (water, energy and land resource) and environmental influences (CO2 emissions and nitrogen emissions) brought by food consumption of per household in Guizhou are much greater than in other provinces, which has a negative influence on sustainable development; by analyzing the driving factors of multiple footprints, it is shown that nutrient intake, household attributes, educational level and health conditions were significantly correlated to multiple footprints. Among them, nutrient intake has greater impact on the multiple footprints of Chinese household food consumption. By comparing multiple footprints of different dietary patterns, it was found that the current Chinese dietary pattern would cause excessive resource consumption, which would bring more pressure on resources and the environment. Adjusting household living habits would possibly reverse the unsustainable situation, such as reducing the consumption of animal-derived foods and adjusting the dietary pattern of households with a higher educational level and income status. Chinese Dietary Guidelines 2016 has better sustainability; the promotion of this dietary pattern across the country would help China to relieve the pressure on resources and environment from the consumer side, promoting the realization of sustainable development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...