Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
BMC Med Imaging ; 23(1): 159, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845636

RESUMO

BACKGROUND: There is a paucity of research investigating the application of machine learning techniques for distinguishing between lipid-poor adrenal adenoma (LPA) and subclinical pheochromocytoma (sPHEO) based on radiomic features extracted from non-contrast and dynamic contrast-enhanced computed tomography (CT) scans of the abdomen. METHODS: We conducted a retrospective analysis of multiphase spiral CT scans, including non-contrast, arterial, venous, and delayed phases, as well as thin- and thick-thickness images from 134 patients with surgically and pathologically confirmed. A total of 52 patients with LPA and 44 patients with sPHEO were randomly assigned to training/testing sets in a 7:3 ratio. Additionally, a validation set was comprised of 22 LPA cases and 16 sPHEO cases from two other hospitals. We used 3D Slicer and PyRadiomics to segment tumors and extract radiomic features, respectively. We then applied T-test and least absolute shrinkage and selection operator (LASSO) to select features. Six binary classifiers, including K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), support vector machine (SVM), and multi-layer perceptron (MLP), were employed to differentiate LPA from sPHEO. Receiver operating characteristic (ROC) curves and area under the curve (AUC) values were compared using DeLong's method. RESULTS: All six classifiers showed good diagnostic performance for each phase and slice thickness, as well as for the entire CT data, with AUC values ranging from 0.706 to 1. Non-contrast CT densities of LPA were significantly lower than those of sPHEO (P < 0.001). However, using the optimal threshold for non-contrast CT density, sensitivity was only 0.743, specificity 0.744, and AUC 0.828. Delayed phase CT density yielded a sensitivity of 0.971, specificity of 0.641, and AUC of 0.814. In radiomics, AUC values for the testing set using non-contrast CT images were: KNN 0.919, LR 0.979, DT 0.835, RF 0.967, SVM 0.979, and MLP 0.981. In the validation set, AUC values were: KNN 0.891, LR 0.974, DT 0.891, RF 0.964, SVM 0.949, and MLP 0.979. CONCLUSIONS: The machine learning model based on CT radiomics can accurately differentiate LPA from sPHEO, even using non-contrast CT data alone, making contrast-enhanced CT unnecessary for diagnosing LPA and sPHEO.


Assuntos
Adenoma , Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Humanos , Adenoma/diagnóstico por imagem , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Lipídeos , Aprendizado de Máquina , Feocromocitoma/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
2.
Neural Regen Res ; 17(1): 228-232, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100460

RESUMO

In the conventional view a muscle is composed of intermediate structures before its further division into microscopic muscle fibers. Our experiments in mice have confirmed this intermediate structure is composed of the lamella cluster formed by motor endplates, the innervating nerve branches and the corresponding muscle fibers, which can be viewed as an independent structural and functional unit. In this study, we verified the presence of these muscle construction units in rabbits. The results showed that the muscular branch of the femoral nerve sent out 4-6 nerve branches into the quadriceps and the tibial nerve sent out 4-7 nerve branches into the gastrocnemius. When each nerve branch of the femoral nerve was stimulated from the most lateral to the medial, the contraction of the lateral muscle, intermediate muscle and medial muscle of the quadriceps could be induced by electrically stimulating at least one nerve branch. When stimulating each nerve branch of the tibial nerve from the lateral to the medial, the muscle contraction of the lateral muscle 1, lateral muscle 2, lateral muscle 3 and medial muscle of the gastrocnemius could be induced by electrically stimulating at least one nerve branch. Electrical stimulation of each nerve branch resulted in different electromyographical waves recorded in different muscle subgroups. Hematoxylin-eosin staining showed most of the nerve branches around the neuromuscular junctions consisted of one individual neural tract, a few consisted of two or more neural tracts. The muscles of the lower limb in the rabbit can be subdivided into different muscle subgroups, each innervated by different nerve branches, thereby allowing much more complex muscle activities than traditionally stated. Together, the nerve branches and the innervated muscle subgroups can be viewed as an independent structural and functional unit. This study was approved by the Animal Ethics Committee of Peking University People's Hospital (approval No. 2019PHE027) on October 20, 2019.

3.
Neural Regen Res ; 17(2): 459-464, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34269223

RESUMO

Motor endplates (MEPs) are important sites of information exchange between motor neurons and skeletal muscle, and are distributed in an organized pattern of lamellae in the muscle. Delayed repair of peripheral nerve injury typically results in unsatisfactory functional recovery because of MEP degeneration. In this study, the mouse tibial nerve was transected and repaired with a biodegradable chitin conduit, immediately following or 1 or 3 months after the injury. Fluorescent α-bungarotoxin was injected to label MEPs. Tissue optical clearing combined with light-sheet microscopy revealed that MEPs were distributed in an organized pattern of lamellae in skeletal muscle after delayed repair for 1 and 3 months. However, the total number of MEPs, the number of MEPs per lamellar cluster, and the maturation of single MEPs in gastrocnemius muscle gradually decreased with increasing denervation time. These findings suggest that delayed repair can restore the spatial distribution of MEPs, but it has an adverse effect on the homogeneity of MEPs in the lamellar clusters and the total number of MEPs in the target muscle. The study procedures were approved by the Animal Ethics Committee of the Peking University People's Hospital (approval No. 2019PHC015) on April 8, 2019.

4.
Neural Regen Res ; 17(7): 1617-1622, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34916449

RESUMO

MicroRNAs can regulate the function of ion channels in many organs. Based on our previous study we propose that miR-142a-39, which is highly expressed in denervated skeletal muscle, might affect cell excitability through similar mechanisms. In this study, we overexpressed or knocked down miR-142a-3p in C2C12 cells using a lentivirus method. After 7 days of differentiation culture, whole-cell currents were recorded. The results showed that overexpression of miR-142a-3p reduced the cell membrane capacitance, increased potassium current density and decreased calcium current density. Knockdown of miR-142a-3p reduced sodium ion channel current density. The results showed that change in miR-142a-3p expression affected the ion channel currents in C2C12 cells, suggesting its possible roles in muscle cell electrophysiology. This study was approved by the Animal Ethics Committee of Peking University in July 2020 (approval No. LA2017128).

5.
Neural Regen Res ; 16(5): 865-870, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33229721

RESUMO

Complex pathological changes occur during the development of spinal cord injury (SCI), and determining the underlying molecular events that occur during SCI is necessary for the development of promising molecular targets and therapeutic strategies. This study was designed to explore differentially expressed genes (DEGs) associated with the acute and chronic stages of SCI using bioinformatics analysis. Gene expression profiles (GSE45006, GSE93249, and GSE45550) were downloaded from the Gene Expression Omnibus database. SCI-associated DEGs from rat samples were identified, and Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. In addition, a protein-protein interaction network was constructed. Approximately 66 DEGs were identified in GSE45550 between 3-14 days after SCI, whereas 2418 DEGs were identified in GSE45006 1-56 days after SCI. Moreover, 1263, 195, and 75 overlapping DEGs were identified between these two expression profiles, 3, 7/8, and 14 days after SCI, respectively. Additionally, 16 overlapping DEGs were obtained in GSE45006 1-14 days after SCI, including Pank1, Hn1, Tmem150c, Rgd1309676, Lpl, Mdh1, Nnt, Loc100912219, Large1, Baiap2, Slc24a2, Fundc2, Mrps14, Slc16a7, Obfc1, and Alpk3. Importantly, 3882 overlapping DEGs were identified in GSE93249 1-6 months after SCI, including 3316 protein-coding genes and 567 long non-coding RNA genes. A comparative analysis between GSE93249 and GSE45006 resulted in the enrichment of 1135 overlapping DEGs. The significant functions of these 1135 genes were correlated with the response to the immune effector process, the innate immune response, and cytokine production. Moreover, the biological processes and KEGG pathways of the overlapping DEGs were significantly enriched in immune system-related pathways, osteoclast differentiation, the nuclear factor-κB signaling pathway, and the chemokine signaling pathway. Finally, an analysis of the overlapping DEGs associated with both acute and chronic SCI, assessed using the expression profiles GSE93249 and GSE45006, identified four overlapping DEGs: Slc16a7, Alpk3, Lpl and Nnt. These findings may be useful for revealing the biological processes associated with SCI and the development of targeted intervention strategies.

6.
Neural Regen Res ; 15(11): 2108-2115, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32394969

RESUMO

Neutrophil peptide 1 belongs to a family of peptides involved in innate immunity. Continuous intramuscular injection of neutrophil peptide 1 can promote the regeneration of peripheral nerves, but clinical application in this manner is not convenient. To this end, the effects of a single intraoperative administration of neutrophil peptide 1 on peripheral nerve regeneration were experimentally observed. A rat model of sciatic nerve crush injury was established using the clamp method. After model establishment, a normal saline group and a neutrophil peptide 1 group were injected with a single dose of normal saline or 10 µg/mL neutrophil peptide 1, respectively. A sham group, without sciatic nerve crush was also prepared as a control. Sciatic nerve function tests, neuroelectrophysiological tests, and hematoxylin-eosin staining showed that the nerve conduction velocity, sciatic functional index, and tibialis anterior muscle fiber cross-sectional area were better in the neutrophil peptide 1 group than in the normal saline group at 4 weeks after surgery. At 4 and 8 weeks after surgery, there were no differences in the wet weight of the tibialis anterior muscle between the neutrophil peptide 1 and saline groups. Histological staining of the sciatic nerve showed no significant differences in the number of myelinated nerve fibers or the axon cross-sectional area between the neutrophil peptide 1 and normal saline groups. The above data confirmed that a single dose of neutrophil peptide 1 during surgery can promote the recovery of neurological function 4 weeks after sciatic nerve injury. All the experiments were approved by the Medical Ethics Committee of Peking University People's Hospital, China (approval No. 2015-50) on December 9, 2015.

7.
Neural Regen Res ; 15(7): 1360-1367, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31960825

RESUMO

Peripheral nerve injury may trigger changes in mRNA levels in the spinal cord. Finding key mRNAs is important for improving repair after nerve injury. This study aimed to investigate changes in mRNAs in the spinal cord following sciatic nerve injury by transcriptomic analysis. The left sciatic nerve denervation model was established in C57BL/6 mice. The left L4-6 spinal cord segment was obtained at 0, 1, 2, 4 and 8 weeks after severing the sciatic nerve. mRNA expression profiles were generated by RNA sequencing. The sequencing results of spinal cord mRNA at 1, 2, 4, and 8 weeks after severing the sciatic nerve were compared with those at 0 weeks by bioinformatic analysis. We identified 1915 differentially expressed mRNAs in the spinal cord, of which 4, 1909, and 2 were differentially expressed at 1, 4, and 8 weeks after sciatic nerve injury, respectively. Sequencing results indicated that the number of differentially expressed mRNAs in the spinal cord was highest at 4 weeks after sciatic nerve injury. These mRNAs were associated with the cellular response to lipid, ATP metabolism, energy coupled proton transmembrane transport, nuclear transcription factor complex, vacuolar proton-transporting V-type ATPase complex, inner mitochondrial membrane protein complex, tau protein binding, NADH dehydrogenase activity and hydrogen ion transmembrane transporter activity. Of these mRNAs, Sgk1, Neurturin and Gpnmb took part in cell growth and development. Pathway analysis showed that these mRNAs were mainly involved in aldosterone-regulated sodium reabsorption, oxidative phosphorylation and collecting duct acid secretion. Functional assessment indicated that these mRNAs were associated with inflammation and cell morphology development. Our findings show that the number and type of spinal cord mRNAs involved in changes at different time points after peripheral nerve injury were different. The number of differentially expressed mRNAs in the spinal cord was highest at 4 weeks after sciatic nerve injury. These results provide reference data for finding new targets for the treatment of peripheral nerve injury, and for further gene therapy studies of peripheral nerve injury and repair. The study procedures were approved by the Ethics Committee of the Peking University People's Hospital (approval No. 2017PHC004) on March 5, 2017.

8.
Neural Regen Res ; 14(4): 692-698, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30632510

RESUMO

Multiple regeneration of axonal buds has been shown to exist during the repair of peripheral nerve injury, which confirms a certain repair potential of the injured peripheral nerve. Therefore, a systematic nerve transposition repair technique has been proposed to treat severe peripheral nerve injury. During nerve transposition repair, the regenerated nerve fibers of motor neurons in the anterior horn of the spinal cord can effectively grow into the repaired distal nerve and target muscle tissues, which is conducive to the recovery of motor function. The aim of this study was to explore regeneration and nerve functional recovery after repairing a long-segment peripheral nerve defect by transposition of different donor nerves. A long-segment (2 mm) ulnar nerve defect in Sprague-Dawley rats was repaired by transposition of the musculocutaneous nerve, medial pectoral nerve, muscular branches of the radial nerve and anterior interosseous nerve (pronator quadratus muscle branch). In situ repair of the ulnar nerve was considered as a control. Three months later, wrist flexion function, nerve regeneration and innervation muscle recovery in rats were assessed using neuroelectrophysiological testing, osmic acid staining and hematoxylin-eosin staining, respectively. Our findings indicate that repair of a long-segment ulnar nerve defect with different donor nerve transpositions can reinnervate axonal function of motor neurons in the anterior horn of spinal cord and restore the function of affected limbs to a certain extent.

9.
Neural Regen Res ; 14(4): 699-705, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30632511

RESUMO

Our previous studies have confirmed that during nerve transposition repair to injured peripheral nerves, the regenerated nerve fibers of motor neurons in the anterior horn of the spinal cord can effectively repair distal nerve and target muscle tissue and restore muscle motor function. To observe the effect of nerve regeneration and motor function recovery after several types of nerve transposition for median nerve defect (2 mm), 30 Sprague-Dawley rats were randomly divided into sham operation group, epineurial neurorrhaphy group, musculocutaneous nerve transposition group, medial pectoral nerve transposition group, and radial nerve muscular branch transposition group. Three months after nerve repair, the wrist flexion test was used to evaluate the recovery of wrist flexion after regeneration of median nerve in the affected limbs of rats. The number of myelinated nerve fibers, the thickness of myelin sheath, the diameter of axons and the cross-sectional area of axons in the proximal and distal segments of the repaired nerves were measured by osmic acid staining. The ratio of newly produced distal myelinated nerve fibers to the number of proximal myelinated nerve fibers was calculated. Wet weights of the flexor digitorum superficialis muscles were measured. Muscle fiber morphology was detected using hematoxylin-eosin staining. The cross-sectional area of muscle fibers was calculated to assess the recovery of muscles. Results showed that wrist flexion function was restored, and the nerve grew into the distal effector in all three nerve transposition groups and the epineurial neurorrhaphy group. There were differences in the number of myelinated nerve fibers in each group. The magnification of proximal to distal nerves was 1.80, 3.00, 2.50, and 3.12 in epineurial neurorrhaphy group, musculocutaneous nerve transposition group, medial pectoral nerve transposition group, and radial nerve muscular branch transposition group, respectively. Nevertheless, axon diameters of new nerve fibers, cross-sectional areas of axons, thicknesses of myelin sheath, wet weights of flexor digitorum superficialis muscle and cross-sectional areas of muscle fibers of all three groups of donor nerves from different anterior horn motor neurons after nerve transposition were similar to those in the epineurial neurorrhaphy group. Our findings indicate that donor nerve translocation from different anterior horn motor neurons can effectively repair the target organs innervated by the median nerve. The corresponding spinal anterior horn motor neurons obtain functional reinnervation and achieve some degree of motor function in the affected limbs.

10.
Neural Regen Res ; 14(4): 706-712, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30632512

RESUMO

During peripheral nerve transposition repair, if the diameter difference between transposed nerves is large or multiple distal nerves must be repaired at the same time, traditional epineurial neurorrhaphy has the problem of high tension at the suture site, which may even lead to the failure of nerve suture. We investigated whether a small gap bio-sleeve suture with different inner diameters at both ends can be used to repair a 2-mm tibial nerve defect by proximal transposition of the common peroneal nerve in rats and compared the results with the repair seen after epineurial neurorrhaphy. Three months after surgery, neurological function, nerve regeneration, and recovery of nerve innervation muscle were assessed using the tibial nerve function index, neuroelectrophysiological testing, muscle biomechanics and wet weight measurement, osmic acid staining, and hematoxylin-eosin staining. There was no obvious inflammatory reaction and neuroma formation in the tibial nerve after repair by the small gap bio-sleeve suture with different inner diameters at both ends. The conduction velocity, muscle strength, wet muscle weight, cross-sectional area of muscle fibers, and the number of new myelinated nerve fibers in the bio-sleeve suture group were similar to those in the epineurial neurorrhaphy group. Our findings indicate that small gap bio-sleeve suture with different inner diameters at both ends can achieve surgical suture between nerves of different diameters and promote regeneration and functional recovery of injured peripheral nerves.

11.
Int J Oncol ; 53(3): 973-986, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30015880

RESUMO

Glioma is the most prevalent and fatal primary tumor of the central nervous system in adults, while the development of effective therapeutic strategies in clinical practice remain a challenge. Nucleotide-binding domain leucine-rich family pyrin-containing 3 (NLRP3) has been reported to be associated with tumorigenesis and progression; however, its expression and function in human glioma remain unclear. The present study was designed to explore the biological role and potential mechanism of NLRP3 in human glioma. The results demonstrated that overexpression of NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), caspase­1 and interleukin (IL)­1ß protein in human glioma tissues were significantly correlated with higher World Health Organization grades. The in vitro biological experiments demonstrated that NLRP3 downregulation significantly inhibited the proliferation, migration and invasion, and promoted the apoptosis of SHG44 and A172 glioma cell lines. Furthermore, western blot assays revealed that the downregulation of NLRP3 significantly reduced the expression of ASC, caspase­1 and IL­1ß protein. Furthermore, NLRP3 knockdown caused the inhibition of epithelial-mesenchymal transition (EMT), and inhibited the phosphorylation of AKT serine/threonine kinase (AKT) and phosphorylation of phosphatase and tensin homolog (PTEN). Consistently, the upregulation of NLRP3 significantly increased the expression of ASC, caspase­1, IL­1ß and phosphorylated-PTEN, promoted proliferation, migration, invasion and EMT, inhibited apoptosis, and activated the AKT signaling pathway. The data of the present study indicate that NLRP3 affects human glioma progression and metastasis through multiple pathways, including EMT and PTEN/AKT signaling pathway regulation, enhanced inflammasome activation, and undefined inflammasome-independent mechanisms. Understanding the biological effects of NLRP3 in human glioma and the underlying mechanisms may offer novel insights for the development of glioma clinical therapeutic strategies.


Assuntos
Neoplasias do Sistema Nervoso Central/patologia , Transição Epitelial-Mesenquimal/genética , Glioma/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/genética , Adolescente , Adulto , Idoso , Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Progressão da Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Gradação de Tumores , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Regulação para Cima , Adulto Jovem
13.
Mol Med Rep ; 17(2): 3062-3068, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207171

RESUMO

Ginsenoside Rh2 (G­Rh2), the main bioactive component in American ginseng, is known to exert a wide variety of biological activities. Accumulating evidence suggests that G­Rh2 inhibits cell proliferation and induces apoptosis of tumor cells. However, the possible mechanism through which G­Rh2 exerts its action on malignant glioma cells have not been completely elucidated. The findings of the present study demonstrated that G­Rh2 decreased the viability of glioma cells in a dose­ and time­dependent manner, and induced cell cycle arrest. G­Rh2­induced cell cycle arrest was accompanied by the downregulation of cyclin­dependent kinase 4 and Cyclin E. In addition, G­Rh2 markedly reduced the expression of total­ RAC­α serine/threonine­protein kinase (Akt) and the levels of phosphorylated­Akt. These findings provide mechanistic details of how G­Rh2 acts on glioma cells and suggest that G­Rh2 may function as a potential anti­cancer drug for glioma treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ginsenosídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Humanos , Fosforilação
14.
Neural Regen Res ; 12(7): 1172-1176, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28852402

RESUMO

Motor nerves and sensory nerves conduct signals in different directions and function in different ways. In the surgical treatment of peripheral nerve injuries, the best prognosis is obtained by keeping the motor and sensory nerves separated and repairing the nerves using the suture method. However, the clinical consequences of connections between sensory and motor nerves currently remain unknown. In this study, we analyzed the anatomical structure of the rat femoral nerve, and observed the motor and sensory branches of the femoral nerve in the quadriceps femoris. After ligation of the nerves, the proximal end of the sensory nerve was connected with the distal end of the motor nerve, followed by observation of the changes in the newly-formed regenerated nerve fibers. Acetylcholinesterase staining was used to distinguish between the myelinated and unmyelinated motor and sensory nerves. Denervated muscle and newly formed nerves were compared in terms of morphology, electrophysiology and histochemistry. At 8 weeks after connection, no motor nerve fibers were observed on either side of the nerve conduit and the number of nerve fibers increased at the proximal end. The proportion of newly-formed motor and sensory fibers was different on both sides of the conduit. The area occupied by autonomic nerves in the proximal regenerative nerve was limited, but no distinct myelin sheath was visible in the distal nerve. These results confirm that sensory and motor nerves cannot be effectively connected. Moreover, the change of target organ at the distal end affects the type of nerves at the proximal end.

15.
Neural Regen Res ; 12(12): 2077-2083, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29323049

RESUMO

Peripheral nerve injury is a serious disease and its repair is challenging. A cable-style autologous graft is the gold standard for repairing long peripheral nerve defects; however, ensuring that the minimum number of transplanted nerve attains maximum therapeutic effect remains poorly understood. In this study, a rat model of common peroneal nerve defect was established by resecting a 10-mm long right common peroneal nerve. Rats receiving transplantation of the common peroneal nerve in situ were designated as the in situ graft group. Ipsilateral sural nerves (10-30 mm long) were resected to establish the one sural nerve graft group, two sural nerves cable-style nerve graft group and three sural nerves cable-style nerve graft group. Each bundle of the peroneal nerve was 10 mm long. To reduce the barrier effect due to invasion by surrounding tissue and connective-tissue overgrowth between neural stumps, small gap sleeve suture was used in both proximal and distal terminals to allow repair of the injured common peroneal nerve. At three months postoperatively, recovery of nerve function and morphology was observed using osmium tetroxide staining and functional detection. The results showed that the number of regenerated nerve fibers, common peroneal nerve function index, motor nerve conduction velocity, recovery of myodynamia, and wet weight ratios of tibialis anterior muscle were not significantly different among the one sural nerve graft group, two sural nerves cable-style nerve graft group, and three sural nerves cable-style nerve graft group. These data suggest that the repair effect achieved using one sural nerve graft with a lower number of nerve fibers is the same as that achieved using the two sural nerves cable-style nerve graft and three sural nerves cable-style nerve graft. This indicates that according to the 'multiple amplification' phenomenon, one small nerve graft can provide a good therapeutic effect for a large peripheral nerve defect.

16.
Neural Regen Res ; 10(10): 1700-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26692873

RESUMO

The purpose of this study was to investigate the effect of four fluorescent dyes, True Blue (TB), Fluoro-Gold (FG), Fluoro-Ruby (FR), and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), in retrograde tracing of rat spinal motor neurons. We transected the muscle branch of the rat femoral nerve and applied each tracer to the proximal stump in single labeling experiments, or combinations of tracers (FG-DiI and TB-DiI) in double labeling experiments. In the single labeling experiments, significantly fewer labeled motor neurons were observed after FR labeling than after TB, FG, or DiI, 3 days after tracer application. By 1 week, there were no significant differences in the number of labeled neurons between the four groups. In the double-labeling experiment, the number of double-labeled neurons in the FG-DiI group was not significantly different from that in the TB-DiI group 1 week after tracer application. Our findings indicate that TB, FG, and DiI have similar labeling efficacies in the retrograde labeling of spinal motor neurons in the rat femoral nerve when used alone. Furthermore, combinations of DiI and TB or FG are similarly effective. Therefore, of the dyes studied, TB, FG and DiI, and combinations of DiI with TB or FG, are the most suitable for retrograde labeling studies of motor neurons in the rat femoral nerve.

17.
Artigo em Inglês | MEDLINE | ID: mdl-26306219

RESUMO

We conducted in-depth analysis on the use of a popular Chinese social networking and microblogging site, Sina Weibo, to monitor an avian influenza A(H7N9) outbreak in China and to assess the value of social networking sites in the surveillance of disease outbreaks that occur overseas. Two data sets were employed for our analysis: a line listing of confirmed cases obtained from conventional public health information channels and case information from Weibo posts. Our findings showed that the level of activity on Weibo corresponded with the number of new cases reported. In addition, the reporting of new cases on Weibo was significantly faster than those of conventional reporting sites and non-local news media. A qualitative review of the functions of Weibo also revealed that Weibo enabled timely monitoring of other outbreak-relevant information, provided access to additional crowd-sourced epidemiological information and was leveraged by the local government as an interactive platform for risk communication and monitoring public sentiment on the policy response. Our analysis demonstrated the potential for social networking sites to be used by public health agencies to enhance traditional communicable disease surveillance systems for the global surveillance of overseas public health threats. Social networking sites also can be used by governments for calibration of response policies and measures and for risk communication.


Assuntos
Surtos de Doenças , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana/epidemiologia , Vigilância em Saúde Pública/métodos , Mídias Sociais , China/epidemiologia , Doenças Transmissíveis/epidemiologia , Monitoramento Epidemiológico , Humanos , Influenza Humana/prevenção & controle
18.
Chin Med J (Engl) ; 128(10): 1301-5, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25963348

RESUMO

BACKGROUND: This study aimed to evaluate the effects of standard rescue procedure (SRP) in improving severe trauma treatments in China. METHODS: This study was conducted in 12 hospitals located in geographically and industrially different cities in China. A standard procedure on severe trauma rescue was established as a general rule for staff training and patient treatment. A regional network (system) efficiently integrating prehospital rescue, emergency room treatments, and hospital specialist treatments was built under the rule for information sharing and improving severe trauma treatments. Treatment outcomes were compared between before and 1 year after the implementation of the SRP. RESULTS: The outcomes of a total of 74,615 and 12,051 trauma cases were collected from 12 hospitals before and after the implementation of the SRP. Implementation of the SRP led to efficient cooperation and information sharing of different treatment services. The emergency response time, prehospital transit time, emergency rescue time, consultation call time, and mortality rate of patients were 24.24 ± 4.32 min, 45.69 ± 3.89 min, 6.38 ± 1.05 min, 17.53 ± 0.72 min, and 33.82% ± 3.87% (n = 441), respectively, before the implementation of the standardization and significantly reduced to 10.11 ± 3.21 min, 22.39 ± 4.32 min, 3.26 ± 0.89 min, 3.45 ± 0.45 min, and 20.49% ± 3.11%, separately (n = 495, P < 0.05) after that. CONCLUSIONS: Staff training and SRP can significantly improve the efficiency of severe trauma treatments in China.


Assuntos
Serviços Médicos de Emergência/normas , Ferimentos e Lesões , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , China , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Neural Regen Res ; 10(1): 53-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25788920

RESUMO

Multiple-bud regeneration, i.e., multiple amplification, has been shown to exist in peripheral nerve regeneration. Multiple buds grow towards the distal nerve stump during proximal nerve fiber regeneration. Our previous studies have verified the limit and validity of multiple amplification of peripheral nerve regeneration using small gap sleeve bridging of small donor nerves to repair large receptor nerves in rodents. The present study sought to observe multiple amplification of myelinated nerve fiber regeneration in the primate peripheral nerve. Rhesus monkey models of distal ulnar nerve defects were established and repaired using muscular branches of the right forearm pronator teres. Proximal muscular branches of the pronator teres were sutured into the distal ulnar nerve using the small gap sleeve bridging method. At 6 months after suture, two-finger flexion and mild wrist flexion were restored in the ulnar-sided injured limbs of rhesus monkey. Neurophysiological examination showed that motor nerve conduction velocity reached 22.63 ± 6.34 m/s on the affected side of rhesus monkey. Osmium tetroxide staining demonstrated that the number of myelinated nerve fibers was 1,657 ± 652 in the branches of pronator teres of donor, and 2,661 ± 843 in the repaired ulnar nerve. The rate of multiple amplification of regenerating myelinated nerve fibers was 1.61. These data showed that when muscular branches of the pronator teres were used to repair ulnar nerve in primates, effective regeneration was observed in regenerating nerve fibers, and functions of the injured ulnar nerve were restored to a certain extent. Moreover, multiple amplification was subsequently detected in ulnar nerve axons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...