Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965418

RESUMO

The gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca2+ signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca2+ signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca2+ signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.

2.
Cell Death Dis ; 13(8): 688, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933423

RESUMO

cAMP Responsible Element Binding Protein (CREB) is an evolutionarily conserved transcriptional factor that regulates cell growth, synaptic plasticity and so on. In this study, we unexpectedly found proteasome inhibitors, such as MLN2238, robustly increase CREB activity in adult flies through a large-scale compound screening. Mechanistically, reactive oxidative species (ROS) generated by proteasome inhibition are required and sufficient to promote CREB activity through c-Jun N-terminal kinase (JNK). In 293 T cells, JNK activation by MLN2238 is also required for increase of CREB phosphorylation at Ser133. Meanwhile, transcriptome analysis in fly intestine identified a group of genes involved in redox and proteostatic regulation are augmented by overexpressing CRTC (CREB-regulated transcriptional coactivator). Intriguingly, CRTC overexpression in muscles robustly restores protein folding and proteasomal activity in a fly Huntington's disease (HD) model, and ameliorates HD related pathogenesis, such as protein aggregates, motility, and lifespan. Moreover, CREB activity increases during aging, and further enhances its activity can suppress protein aggregates in aged muscles. Together, our results identified CRTC/CREB downstream ROS/JNK signaling as a conserved sensor to tackle oxidative and proteotoxic stresses. Boosting CRTC/CREB activity is a potential therapeutic strategy to treat aging related protein aggregation diseases.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Drosophila , Animais , Proteínas de Transporte/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Drosophila/genética , Drosophila/metabolismo , Fosforilação , Agregados Proteicos , Espécies Reativas de Oxigênio/metabolismo
3.
iScience ; 24(6): 102507, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34308280

RESUMO

Lipid digestion and absorption are tightly regulated to cope with metabolic demands among tissues. How these processes are coordinated is not well characterized. Here, we found that mifepristone (RU486) prevents lipid digestion both in flies and mice. In flies, RU486 administration suppresses lipid digestion by transcriptional downregulating Magro in guts. Similarly, intestinal lipid uptake in mice was also suppressed by RU486 through the glucocorticoid receptor (GR). Further studies showed that the pancreatic lipase Pnlip is a direct transcriptional target of GR in pancreas tissues. Glucocorticoid levels in mice fed a high fat diet (HFD) are significantly lower than those fed on a conventional diet, and RU486 administration inhibits HFD-induced obesity both in mice and flies. Our findings identified a novel mechanism of RU486 functions as a GR antagonist systematically regulating lipid metabolism, providing new insight on the role of Glucocorticoid/GR in Cushing disease, diabetes, and other related metabolic syndromes.

4.
Biol Open ; 9(6)2020 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-32487516

RESUMO

Large-scale compound screening in adult flies is hampered by the lack of continuous drug delivery systems and poor solubility of numerous compounds. Here we found that gum Arabic (Acacia/Senegal gum), a widely used stabilizer, can also emulsify lipophilic compounds and profoundly increase their accessibility to target tissues in Drosophila and mice. We further developed a gum Arabic-based drug delivery system, wherein the drug was ground into gum Arabic and emulsified in liquid food fed to flies by siphoning through a U-shape glass capillary. This system did not affect food intake nor cell viability. Since drugs were continuously delivered by siphoning, minimal compound waste and less frequent food changes make this system ideal for large-scale long-term screenings. In our pilot screening for antitumor drugs in the NCI DTP library, we used a Drosophila model of colorectal cancer and identified two drugs that are especially hydrophobic and were not identified in previous screenings. Our data demonstrated that gum Arabic facilitates drug delivery in animal models and the system is suitable for long-term high-throughput drug screening in Drosophila This system would accelerate drug discovery for chronic and cognitive conditions.


Assuntos
Drosophila/efeitos dos fármacos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Goma Arábica , Animais , Linhagem Celular , Células Cultivadas , Portadores de Fármacos/química , Goma Arábica/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Micelas , Preparações Farmacêuticas/química , Ácidos Fosfatídicos/química , Triglicerídeos/química
5.
PLoS One ; 14(11): e0225214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31714929

RESUMO

Dysfunctional mitochondria have been implicated in aging and age-related disorders such as Parkinson's diseases (PD). We previously showed that pink1 and parkin, two familial PD genes, function in a linear pathway to maintain mitochondrial integrity and function. Studies of mammalian cell lines also suggest that these genes regulate mitochondrial autophagy(mitophagy). Overexpressing Parkin promotes proteostasis and function of aged muscles both in fruit flies and mice, and recent studies also indicated that mitochondrial ubiquitination are accumulated in aged muscles. However, the underlying mechanisms for pink1 and parkin mediated mitophagy on longevity is not fully understood. Here, we found that mitochondrial ubiquitination increased in indirect flight muscles (IFMs) in an age-dependent manner. Overexpression of pink1 or parkin in IFMs can abolish mitochondrial ubiquitination, restore ATP level and extend lifespan, while blocking autophagy via ATG1 knock-down suppress these effects in aged IFMs. Taken together, these results show that pink1/parkin promotes mitophagy of mitochondrial ubiquitination in aged muscles and extend lifespan in an Atg1-dependent manner. Our study provides physiological evidence that mitophagy of mitochondrial ubiquitination mediated by PINK1/ Parkin is crucial for muscle function and highlights the role of mitophagy in the pathogenesis of chronic diseases like PD.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expressão Gênica , Mitocôndrias/genética , Músculo Esquelético/metabolismo , Ubiquitina-Proteína Ligases/genética , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Autofagia , Drosophila melanogaster/metabolismo , Humanos , Mitocôndrias/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...