Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Res ; 28(1): 99, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841777

RESUMO

BACKGROUND: Hyperbaric oxygen (HBO) plays positive roles in the therapy of traumatic brain injury (TBI); however, the mechanism underlying its effects on TBI is largely unknown. The study aims to elucidate the molecular mechanism implicated with the interaction between platelet-derived growth factor-BB (PDGF-BB) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway, which may play critical roles during HBO treatment both in the astrocyte scratching model in vitro and rat TBI model in vivo. METHODS: Changes in neurological function and wound healing were evaluated using the neurological severity scores (NSS) scale, immunohistochemistry, western blotting, and qRT-PCR, respectively. RESULTS: The results showed that PDGF-BBi (PDGB interfered with small RNA) dramatically improves neuronal viability in vitro when transfected into the scratched astrocytes derived from the cerebral cortex of neonatal rats. Moreover, in vivo experiments revealed that HBO therapy substantially elevated the NSS scores and simultaneously reduced the mortality in TBI rats, as indicated by the NSS scales. Notably, HBO therapy was found to possess the ability to inhibit glial cell proliferation, promote the regeneration of neurons and synapses, and ultimately facilitate the wound healing, as revealed by immunohistochemistry and glial scar formation found in TBI rats. Importantly, HBO markedly decreased the expression levels of PDGF-BB and ERK1/2. It can clearly be seen that downregulated PDGF-BB and ERK1/2 levels were corresponding with the status of significant amelioration of the therapeutic effect of HBO. Conversely, the upregulation of PDGF-BB and ERK1/2 levels was in line with the opposite effect. CONCLUSION: It has been concluded that HBO therapy may play its active role in TBI treatment dependent on astrogliosis inhibition, which may be achieved by downregulating the ERK1/2 signaling pathway mediated by PDGF-BB.


Assuntos
Lesões Encefálicas Traumáticas , Oxigenoterapia Hiperbárica , Ratos , Animais , Becaplermina/farmacologia , Oxigenoterapia Hiperbárica/métodos , Gliose , Proteína Quinase 3 Ativada por Mitógeno/farmacologia , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Oxigênio , Células Cultivadas
2.
J Am Chem Soc ; 145(2): 1301-1309, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36579888

RESUMO

Various transition-metal trichalcogenides (TMTC) show unique electronic properties, such as metal-insulator transition, topological insulator, and even superconducting transition. Currently, almost all metallic TMTC compounds can show superconductivity either at ambient pressure or at high pressure. However, most TMTC compounds are semiconductors and even insulators. Does superconductivity exist in any non-metallic TMTC compound by artificial manipulation? In this work, the electronic behavior of highly insulating HfS3 has been manipulated in terms of pressure. HfS3 undergoes an insulator-to-semiconductor transition near 17 GPa with a band gap reduction of ∼1 eV. Optical absorption, Raman spectroscopy, and X-ray diffraction measurements provide consistent results, suggesting the structural origin of the electronic transition. Upon further compression, HfS3 becomes a superconductor without further structural transition. The superconducting transition occurs as early as 50.6 GPa, and the Tc reaches 8.1 K at 121 GPa, which sets a new record for TMTCs. This work reveals that all TMTCs may be superconductors and opens a new avenue to explore the abundant emergent phenomena in the TMTC material family.

3.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(3): 284-288, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35574747

RESUMO

OBJECTIVE: To investigate the effect and mechanism of bone marrow mesenchymal stem cell (BMSC) on pyroptosis of rats with kidney injury. METHODS: Bone marrow of 4-5 week-old female Sprague-Dawley (SD) rats was isolated in vitro and BMSC was obtained. The third generations of BMSC were used to further experiments. Fifteen 6 week-old SD rats were cluster-randomized divided into control group, kidney injury group and BMSC group (5 rats in each group). Rats in kidney injury group were injected with lipopolysaccharide (LPS) 1 mg/kg via tail vein; the control group was given the same amount of normal saline. BMSC group was injected with 0.5 mL BMSC (including 2×106 BMSC) via tail vein after modeling; the kidney injury group received the same amount of normal saline. On day 3 after these injections, serum creatinine (SCr) was detected by picric acid method, and blood urea nitrogen (BUN) was detected by diacetyl monoxime. The levels of cystatin C (Cys C), interleukins (IL-1ß and IL-18) in blood were detected by enzyme-linked immunosorbent assay (ELISA). The rats were then sacrificed and their kidneys were removed for subsequent detection. The mRNA expression levels of NOD-like receptor protein 3 (NLRP3) and cysteinyl aspartate-specific protease-1 (caspase-1) of kidney were detected by quantificational real-time quantitative polymerase chain reaction (qRT-PCR). The protein expression levels of NLRP3 and caspase-1 of kidney were detected by Western blotting. RESULTS: In vitro, after bone marrow cell suspension was cultured for 24 hours, a large number of round adherent cells and suspended cells appeared in each culture flask. After 4-5 days of culture, a large number of long spindle cells adhered to the wall, and there were still obvious impurity cells. After trypsin digestion and passage to the third generation, the long spindle adherent cells grew mainly in the culture flask and were basically purified as BMSC. In vivo, compared with the control group, the levels of SCr, BUN, Cys C, IL-1ß and IL-18 in kidney injury group were increased [SCr (µmol/L): 85.22±2.29 vs. 21.80±0.59, BUN (mmol/L): 11.50±0.64 vs. 5.86±0.83, Cys C (mg/L): 0.13±0.01 vs. 0.11±0.02, IL-1ß (ng/L): 31.49±1.42 vs. 4.74±0.49, IL-18 (ng/L): 29.01±1.95 vs. 1.52±0.03, all P < 0.05]. The mRNA and protein expression levels of NLRP3, caspase-1 were significantly increased [NLRP3 mRNA (2-ΔΔCt): 3.635±0.296 vs. 1.000±0.002, caspase-1 mRNA (2-ΔΔCt): 4.020±0.228 vs. 1.001±0.003; NLRP3 protein (NLRP3/ß-actin): 1.560±0.868 vs. 0.902±0.036, caspase-1 protein (caspase-1/ß-actin): 1.392±0.097 vs. 0.895±0.046, all P < 0.05]. Compared with kidney injury group, the levels of SCr, BUN, IL-1ß and IL-18 in BMSC group were significantly decreased [SCr (µmol/L): 51.64±3.84 vs. 85.22±2.29, BUN (mmol/L): 9.90±0.46 vs. 11.50±0.64, IL-1ß (ng/L): 24.20±1.45 vs. 31.49±1.42, IL-18 (ng/L): 12.97±1.25 vs. 29.01±1.95, all P < 0.05]. The mRNA and protein expression levels of NLRP3, caspase-1 were significantly decreased [NLRP3 mRNA (2-ΔΔCt): 1.488±0.136 vs. 3.635±0.296, caspase-1 mRNA (2-ΔΔCt): 1.643±0.143 vs. 4.020±0.228; NLRP3 protein (NLRP3/ß-actin): 1.227±0.053 vs. 1.560±0.868, caspase-1 protein (caspase-1/ß-actin): 1.159±0.107 vs. 1.392±0.097, all P < 0.05]. CONCLUSIONS: In vivo, BMSC may attenuate pyroptosis in LPS-induced kidney injury rats.


Assuntos
Células-Tronco Mesenquimais , Piroptose , Actinas , Animais , Caspases , Feminino , Interleucina-18/metabolismo , Rim/metabolismo , Lipopolissacarídeos/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Solução Salina
4.
Curr Stem Cell Res Ther ; 17(4): 361-369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392791

RESUMO

BACKGROUND: The transplantation of bone marrow mesenchymal cells (BMSCs) has been shown to be an effective mean for treating sepsis-related organ damage. Pytoptotic cell death, in turn, has recently been identified as a key driver of sepsis-related damage. At present, there are few studies on the effect of BMSC transplantation on pyroptotic cell death. OBJECTIVE: We explored the ability of BMSCs to attenuate hepatic damage in a pyroptosis-related manner in a rat model of lipopolysaccharide (LPS)-induced liver injury. METHODS: Following injury modeling and BMSC transplantation, we assessed the expression of the NLR family, pyrin domain containing 3 (NLRP3) inflammasome, and key downstream pyroptosis-related signaling molecules. RESULTS: It was found that BMSC transplantation was sufficient to significantly improve rat survival after LPS injection. A significantly reduced expression of the pyroptosis-related proteins NLRP3, caspase-1, IL-1ß, and IL-18 in rats that had undergone BMSC transplantation compared to control animals was observed. Notably, this activity was superior to single-agent administration of the NLRP3 inhibitor MCC950. CONCLUSION: Our data suggest that BMSC transplantation may alleviate LPS-induced hepatic damage by suppressing the activation of the NLRP3 inflammasome and the induction of pyroptotic cell death.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias , Células-Tronco Mesenquimais , Sepse , Animais , Hepatócitos , Inflamassomos , Lipopolissacarídeos/toxicidade , Células-Tronco Mesenquimais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Ratos
5.
ACS Omega ; 6(19): 12591-12597, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34056409

RESUMO

We sintered bulk trigonal ε-Fe2N (space group: P312) with the high-pressure and high-temperature method. Structural refinements by the Rietveld method result in a trigonal unit cell with parameters of a = 4.7767(1) Å and c = 4.4179(3) Å. ε-Fe2N is ferromagnetic with a Curie temperature of ∼250 K, a saturation magnetization (M s) value of up to 1.2 µB/formula units (f.u.), and comparatively low coercive field. The Vickers hardness was measured, and the results showed that the asymptotic hardness of bulk ε-Fe2N is about 6.5 GPa with a load of 1000 g. Thermogravimetric (TG) analysis shows that ε-Fe2N is thermally stable below 670 K. ε-Fe2N exhibits good metal conductivity, and the electron transport measurements show that the resistivity of it is 172 µΩ cm at room temperature. The theoretical calculations suggest that the conducting states are mainly derive from Fe-3d states.

6.
Phys Rev Lett ; 126(15): 155701, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929239

RESUMO

The layered crystal of EuSn_{2}As_{2} has a Bi_{2}Te_{3}-type structure in rhombohedral (R3[over ¯]m) symmetry and has been confirmed to be an intrinsic magnetic topological insulator at ambient conditions. Combining ab initio calculations and in situ x-ray diffraction measurements, we identify a new monoclinic EuSn_{2}As_{2} structure in C2/m symmetry above ∼14 GPa. It has a three-dimensional network made up of honeycomblike Sn sheets and zigzag As chains, transformed from the layered EuSn_{2}As_{2} via a two-stage reconstruction mechanism with the connecting of Sn-Sn and As-As atoms successively between the buckled SnAs layers. Its dynamic structural stability has been verified by phonon mode analysis. Electrical resistance measurements reveal an insulator-metal-superconductor transition at low temperature around 5 and 15 GPa, respectively, according to the structural conversion, and the superconductivity with a T_{C} value of ∼4 K is observed up to 30.8 GPa. These results establish a high-pressure EuSn_{2}As_{2} phase with intriguing structural and electronic properties and expand our understandings about the layered magnetic topological insulators.

7.
Cell Transplant ; 29: 963689720929992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32452221

RESUMO

Mesenchymal stem cells (MSCs) are thought to have great potential in the therapy of acute liver injury. It is possible that these cells may be regulated by the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling axis, which has been shown to promote stem cells migration in the inflammation-associated diseases. However, the effects of SDF-1/CXCR4 axis on the MSCs-transplantation-based treatment for acute liver injury and the underlying mechanisms are largely unknown. In this study, we sought to determine whether SDF-1/CXCR4 would augment the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs) by promoting their migration, which may result from activating the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, in a rat acute liver injury model induced by lipopolysaccharide (LPS). We found that BMSCs transplantation markedly attenuated liver injury and improved the survival of LPS-treated rats. Of interest, overexpression of CXCR4 in BMSCs could substantially promote their migration both in vitro and in vivo, and result in even better therapeutic effects. This might be attributed to the activation of PI3K/Akt signaling pathway in BMSCs that is downstream of CXCR4, as demonstrated by the use of the CXCR4 antagonist AMD3100 and PI3K pathway inhibitor LY294002 assays in vitro and in vivo. Together, our results unraveled a novel molecular mechanism for the therapeutic effect of BMSCs for the treatment of acute liver injury, which may shed a new light on the clinical application of BMSCs for acute liver failure.


Assuntos
Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Lipopolissacarídeos/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/uso terapêutico , Animais , Movimento Celular , Feminino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
8.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 30(9): 830-835, 2018 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-30309407

RESUMO

OBJECTIVE: To determine the effect of bone mesenchymal stem cells (BMSCs) in transplantation therapy for lipopolysaccharide (LPS)-induced coagulation disorder and the underlying mechanism of high mobility group protein B1-receptors for advanced glycation end products/Toll-like receptors-nuclear factor-κB (HMGB1-RAGE/TLRs-NF-κB) signaling pathway. METHODS: BMSCs of female Sprague-Dawley (SD) rats ageing 4-5 weeks old were extracted and cultivated in vitro, and the fourth-passaged BMSCs phenotype was identified by flow cytometry for transplantation in the following experimental study. The rats were randomly divided into normal saline (NS) control group, LPS group, and BMSC group according to the random number table with 15 rats in each group. Coagulation disorders model was reproduced by injection of 1 mg/kg LPS via saphenous vein, and the rats in the NS control group was injected with equal volume NS. Those in the BMSC group were infused BMSC 0.5 mL containing 1×106 cells via tail vein at 2 hours after LPS injection, and the rats in other groups were injected with equal volume NS. Abdominal aorta blood was collected at 1, 3 and 7 days post operation. Coagulation indexes such as platelet count (PLT), platelet volume distribution width (PDW), mean platelet volume (MPV), plateletcrit (PCT), platelet large cell ratio (P-LCR), activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT), international normalized ratio (INR), and fibrinogen (FIB) were determined. The mRNA levels and contents of HMGB1, RAGE, TLR2/4 and NF-κB were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. RESULTS: (1) The cells cultured in vitro were spindle shaped or flat. The fourth-passaged BMSCs phenotype was successfully identified by flow cytometry technology. (2) Coagulation indexes: compared with NS control group, PLT, PCT and FIB in LPS group were significantly decreased, PDW, MPV, P-LCP, and INR were significantly increased, and APTT, PT, and TT were significantly prolonged from the first day. Furthermore, those in LPS group were gradually ameliorated with prolongation of LPS induction time. The coagulation function abnormality induced by LPS was reversed by BMSCs with significant difference at 1 day as compared with LPS group [PLT (×109/L): 398.8±17.9 vs. 239.1±15.8, PCT (%): 0.35±0.04 vs. 0.23±0.06, FIB (g/L): 1.7±0.6 vs. 0.8±0.1, PDW (%): 12.4±1.6 vs. 16.2±1.5, MPV (fl): 11.0±1.6 vs. 13.7±1.1, P-LCP (%): 13.0±2.1 vs. 15.3±2.7, INR: 1.52±0.17 vs. 1.82±0.19, APTT (s): 66.3±4.1 vs. 89.5±4.5, PT (s): 18.3±0.7 vs. 25.1±1.9, TT (s): 87.5±7.8 vs. 115.0±9.7, all P < 0.05], till 7 days. (3) HMGB1-RAGE/TLRs-NF-κB signaling pathway related molecules: compared with NS control group, the mRNA expressions and contents of HMGB1, RAGE, TLR2/4 and NF-κB were significantly increased in LPS group from the first day. However, the mRNA expressions and contents of the molecules in LPS group were gradually decreased with prolongation of LPS induction time. After BMSC intervention, the mRNA expressions and contents of molecules at 1 day were significantly lower than those of LPS group [HMGB1 mRNA (2-ΔΔCt): 10.77±0.04 vs. 24.51±3.69, HMGB1 content (µg/L): 0.48±0.01 vs. 0.95±0.06; RAGE mRNA (2-ΔΔCt): 11.57±1.11 vs. 18.08±0.29, RAGE content (µg/L): 0.73±0.04 vs. 1.37±0.06; TLR2 mRNA (2-ΔΔCt): 2.60±0.22 vs. 12.61±0.27, TLR2 content (µg/L): 0.81±0.03 vs. 1.59±0.09; TLR4 mRNA (2-ΔΔCt): 2.95±0.52 vs. 4.06±0.11, TLR4 content (µg/L): 0.80±0.09 vs. 1.18±0.11; NF-κB mRNA (2-ΔΔCt): 1.29±0.06 vs. 7.79±0.25, NF-κB content (µg/L): 1.22±0.24 vs. 2.42±0.26, all P < 0.05], till 7 days. CONCLUSIONS: BMSCs administration could ameliorate the coagulation function in LPS-induced coagulation disorder rats and these might be associated with HMGB1-RAGE/TLRs-NF-κB signaling pathway inhibition.


Assuntos
Transtornos da Coagulação Sanguínea/terapia , Transplante de Células-Tronco Mesenquimais , Transdução de Sinais , Animais , Transtornos da Coagulação Sanguínea/etiologia , Células da Medula Óssea , Feminino , Proteína HMGB1 , Lipopolissacarídeos/toxicidade , Células-Tronco Mesenquimais , NF-kappa B , Ratos , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada , Receptor 2 Toll-Like , Receptor 4 Toll-Like
9.
Adv Mater ; 29(44)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28991383

RESUMO

Magnetoelectric multiferroics have received much attention in the past decade due to their interesting physics and promising multifunctional performance. For practical applications, simultaneous large ferroelectric polarization and strong magnetoelectric coupling are preferred. However, these two properties have not been found to be compatible in the single-phase multiferroic materials discovered as yet. Here, it is shown that superior multiferroic properties exist in the A-site ordered perovskite BiMn3 Cr4 O12 synthesized under high-pressure and high-temperature conditions. The compound experiences a ferroelectric phase transition ascribed to the 6s2 lone-pair effects of Bi3+ at around 135 K, and a long-range antiferromagnetic order related to the Cr3+ spins around 125 K, leading to the presence of a type-I multiferroic phase with huge electric polarization. On further cooling to 48 K, a type-II multiferroic phase induced by the special spin structure composed of both Mn- and Cr-sublattices emerges, accompanied by considerable magnetoelectric coupling. BiMn3 Cr4 O12 thus provides a rare example of joint multiferroicity, where two different types of multiferroic phases develop subsequently so that both large polarization and significant magnetoelectric effect are achieved in a single-phase multiferroic material.

10.
J Am Chem Soc ; 139(12): 4574-4581, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28240901

RESUMO

Perovskite PbCoO3 synthesized at 12 GPa was found to have an unusual charge distribution of Pb2+Pb4+3Co2+2Co3+2O12 with charge orderings in both the A and B sites of perovskite ABO3. Comprehensive studies using density functional theory (DFT) calculation, electron diffraction (ED), synchrotron X-ray diffraction (SXRD), neutron powder diffraction (NPD), hard X-ray photoemission spectroscopy (HAXPES), soft X-ray absorption spectroscopy (XAS), and measurements of specific heat as well as magnetic and electrical properties provide evidence of lead ion and cobalt ion charge ordering leading to Pb2+Pb4+3Co2+2Co3+2O12 quadruple perovskite structure. It is shown that the average valence distribution of Pb3.5+Co2.5+O3 between Pb3+Cr3+O3 and Pb4+Ni2+O3 can be stabilized by tuning the energy levels of Pb 6s and transition metal 3d orbitals.

11.
Inorg Chem ; 55(19): 9816-9821, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27623249

RESUMO

Pb2FeOsO6 was prepared for the first time by using high-pressure and high-temperature synthesis techniques. This compound crystallizes into a B-site-ordered double-perovskite structure with cubic symmetry Fm3̅m, where the Fe and Os atoms are orderly distributed with a rock-salt-type manner. Structure refinement shows an Fe-Os antisite occupancy of about 16.6%. Structural analysis and X-ray absorption spectroscopy both demonstrate the charge combination to be Pb2Fe3+Os5+O6. A long-range ferrimagnetic transition is found to occur at about 280 K due to antiferromagnetic interactions between the adjacent Fe3+ and Os5+ spins with a straight (180°) Fe-O-Os bond angle, as confirmed by X-ray magnetic circular-dichroism measurements. First-principles theoretical calculations reveal the semiconducting behavior as well as the Fe3+(↑)Os5+(↓) antiferromagnetic coupling originating from the superexchange interactions between the half-filled 3d orbitals of Fe and t2g orbitals of Os.

12.
Phys Rev Lett ; 115(8): 087601, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26340207

RESUMO

Magnetoelectric multiferroicity is not expected to occur in a cubic perovskite system because of the high structural symmetry. By versatile measurements in magnetization, dielectric constant, electric polarization, neutron and x-ray diffraction, Raman scattering, as well as theoretical calculations, we reveal that the A-site ordered perovskite LaMn(3)Cr(4)O(12) with cubic symmetry is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. When a magnetic field is applied in parallel (perpendicular) to an electric field, the ferroelectric polarization can be enhanced (suppressed) significantly. The unique multiferroic phenomenon observed in this cubic perovskite cannot be understood by conventional spin-driven microscopic mechanisms. Instead, a nontrivial effect involving the interactions between two magnetic sublattices is likely to play a crucial role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...