Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(11): eadl5416, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478619

RESUMO

The yttrium-hydrogen system has gained attention because of near-ambient temperature superconductivity reports in yttrium hydrides at high pressures. We conducted a study using synchrotron single-crystal x-ray diffraction (SCXRD) at 87 to 171 GPa, resulting in the discovery of known (two YH3 phases) and five previously unknown yttrium hydrides. These were synthesized in diamond anvil cells by laser heating yttrium with hydrogen-rich precursors-ammonia borane or paraffin oil. The arrangements of yttrium atoms in the crystal structures of new phases were determined on the basis of SCXRD, and the hydrogen content estimations based on empirical relations and ab initio calculations revealed the following compounds: Y3H11, Y2H9, Y4H23, Y13H75, and Y4H25. The study also uncovered a carbide (YC2) and two yttrium allotropes. Complex phase diversity, variable hydrogen content in yttrium hydrides, and their metallic nature, as revealed by ab initio calculations, underline the challenges in identifying superconducting phases and understanding electronic transitions in high-pressure synthesized materials.

2.
Nat Commun ; 15(1): 2244, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472167

RESUMO

Nitrogen catenation under high pressure leads to the formation of polynitrogen compounds with potentially unique properties. The exploration of the entire spectrum of poly- and oligo-nitrogen moieties is still in its earliest stages. Here, we report on four novel scandium nitrides, Sc2N6, Sc2N8, ScN5, and Sc4N3, synthesized by direct reaction between yttrium and nitrogen at 78-125 GPa and 2500 K in laser-heated diamond anvil cells. High-pressure synchrotron single-crystal X-ray diffraction reveals that in the crystal structures of the nitrogen-rich Sc2N6, Sc2N8, and ScN5 phases nitrogen is catenated forming previously unknown N66- and N86- units and ∞ 2 ( N 5 3 - ) anionic corrugated 2D-polynitrogen layers consisting of fused N12 rings. Density functional theory calculations, confirming the dynamical stability of the synthesized compounds, show that Sc2N6 and Sc2N8 possess an anion-driven metallicity, while ScN5 is an indirect semiconductor. Sc2N6, Sc2N8, and ScN5 solids are promising high-energy-density materials with calculated volumetric energy density, detonation velocity, and detonation pressure higher than those of TNT.

3.
Adv Mater ; 36(3): e2308030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37822038

RESUMO

Carbon nitrides featuring three-dimensional frameworks of CN4 tetrahedra are one of the great aspirations of materials science, expected to have a hardness greater than or comparable to diamond. After more than three decades of efforts to synthesize them, no unambiguous evidence of their existence has been delivered. Here, the high-pressure high-temperature synthesis of three carbon-nitrogen compounds, tI14-C3 N4 , hP126-C3 N4 , and tI24-CN2 , in laser-heated diamond anvil cells, is reported. Their structures are solved and refined using synchrotron single-crystal X-ray diffraction. Physical properties investigations show that these strongly covalently bonded materials, ultra-incompressible and superhard, also possess high energy density, piezoelectric, and photoluminescence properties. The novel carbon nitrides are unique among high-pressure materials, as being produced above 100 GPa they are recoverable in air at ambient conditions.

4.
J Cell Mol Med ; 28(1): e18064, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031653

RESUMO

With the increasing incidence of oral cancer in the world, it has become a hotspot to explore the pathogenesis and prevention of oral cancer. It has been proved there is a strong link between periodontal pathogens and oral cancer. However, the specific molecular and cellular pathogenic mechanisms remain to be further elucidated. Emerging evidence suggests that periodontal pathogens-induced epithelial-mesenchymal transition (EMT) is closely related to the progression of oral cancer. Cells undergoing EMT showed increased motility, aggressiveness and stemness, which provide a pro-tumour environment and promote malignant metastasis of oral cancer. Plenty of studies proposed periodontal pathogens promote carcinogenesis via EMT. In the current review, we discussed the association between the development of oral cancer and periodontal pathogens, and summarized various mechanisms of EMT caused by periodontal pathogens, which are supposed to play an important role in oral cancer, to provide targets for future research in the fight against oral cancer.


Assuntos
Neoplasias Bucais , Porphyromonas gingivalis , Humanos , Neoplasias Bucais/patologia , Transição Epitelial-Mesenquimal , Carcinogênese , Fusobacterium nucleatum
5.
Plant Physiol Biochem ; 206: 108300, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157835

RESUMO

Cryptochromes (CRYs), as blue-light photoreceptors, play a crucial role in regulating flowering time and hypocotyl and cotyledon development. Their physiological functions have been extensively studied in various plant species. However, research on onions remains limited. In this study, we identified AcCRY1 and conducted preliminary investigations into its function. Our results demonstrate that AcCRY1 possesses a conserved domain typical of cryptochromes with high homology to those found in monocots. Furthermore, we examined the expression level of AcCRY1 in onion. The green tissues is significantly higher compared to non-green tissues, and it exhibits a significant response to blue-light induction. AcCRY1 demonstrates cytoplasmic localization under blue-light conditions, while it localizes in the nucleus during darkness, indicating a strong dependence on blue-light for its subcellular distribution. In comparison to cry1, overexpression of AcCRY1 leads to a significant shorten in seedling hypocotyl length, notable expansion of cotyledons, and acceleration of flowering time. The yeast two-hybrid experiment demonstrated the in vitro interaction between AcCRY1, AcCOP1, and AcSPA1. Additionally, BIFC analysis confirmed their interaction in Onion epidermis. Notably, under blue-light conditions, a significantly enhanced binding activity was observed compared to dark conditions. These findings establish a functional foundation for the regulatory role of AcCRY1 in important physiological processes of onion and provide initial insights into the underlying molecular mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Cebolas/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz Azul , Fotoperíodo , Luz , Fatores de Transcrição/metabolismo , Hipocótilo , Regulação da Expressão Gênica de Plantas
6.
Exp Ther Med ; 26(4): 489, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37753294

RESUMO

Whether Helicobacter pylori (H. pylori) infection is associated with periodontitis has been contested for decades. The relationship between H. pylori genotypes and periodontitis has not been clarified either. The present study provides a novel perspective to better understand the role of H. pylori in the pathogenesis of periodontitis. A total of 53 volunteers were recruited and divided into 3 groups in this cross-sectional study, namely the periodontally healthy group (15 participants), the stage I/II periodontitis group (20 participants) and the stage III/IV periodontitis group (18 participants). DNA from the subgingival plaque of all participants was extracted and PCR was performed using specific primers for the urease C gene and cytotoxin-associated gene A (cagA)/vacuolating cytotoxin gene A (vacA) to detect the presence and genotype of H. pylori. A χ2 test and one-way ANOVA were performed on the data. There was no significant difference in sex, age or body mass index between the groups. The detection rate of H. pylori was 39.62% in the total population and increased with the deepening of probing depth and clinical attachment loss. There were significant differences in the detection rate of H. pylori among the three groups, with 13.33, 40.00 and 61.11% in the periodontally healthy, stage I/II periodontitis and stage III/IV periodontitis groups, respectively (χ2=8.760, P<0.001). The cagA-/vacAs2m2 genotype was most commonly detected in the periodontally healthy group (100%). In the periodontitis group, cagA+/vacAs1m2 was the most commonly detected genotype in the stage I/II periodontitis group (37.5%) and cagA+/vacAs1m1 in the stage III/IV periodontitis group (36.3%). The results of the present study suggest that the detection rates and genotypes of H. pylori in the subgingival plaque are associated with the status of periodontitis. cagA+/vacAs1m1 and cagA+/vacAs1m2 may be considered virulence markers of periodontitis. However, given the small sample size and lack of correlation analysis of the study, further larger scale and high-quality clinical trials are required to confirm these findings.

7.
Angew Chem Int Ed Engl ; 62(47): e202311516, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37768278

RESUMO

A series of isostructural Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) oxoguanidinates was synthesized under high-pressure (25-54 GPa) high-temperature (2000-3000 K) conditions in laser-heated diamond anvil cells. The crystal structure of this novel class of compounds was determined via synchrotron single-crystal X-ray diffraction (SCXRD) as well as corroborated by X-ray absorption near edge structure (XANES) measurements and density functional theory (DFT) calculations. The Ln3 O2 (CN3 ) solids are composed of the hitherto unknown CN3 5- guanidinate anion-deprotonated guanidine. Changes in unit cell volumes and compressibility of Ln3 O2 (CN3 ) (Ln=La, Eu, Gd, Tb, Ho, Yb) compounds are found to be dictated by the lanthanide contraction phenomenon. Decompression experiments show that Ln3 O2 (CN3 ) compounds are recoverable to ambient conditions. The stabilization of the CN3 5- guanidinate anion at ambient conditions provides new opportunities in inorganic and organic synthetic chemistry.

8.
Insects ; 14(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37504620

RESUMO

Two new genera and species of Dermaptera are described from the Middle Jurassic Jiulongshan Formation of Daohugou, Inner Mongolia, China: Applanatiforceps angustus gen. et sp. nov. in the archidermapteran family Protodiplatyidae, and Ekpagloderma gracilentum gen et sp. nov. in the eodermapteran family Semenoviolidae. Applanatiforceps shares the typical characters of the extinct suborder Archidermaptera (e.g., pentamerous meta tarsi, filiform and multimerous cerci) and externalized ovipositor. The family identity of the Protodiplatyidae can be further distinguished by comparing this new genus with other genera of the Protodiplatyidae. As a result of its large compound eyes, tegmina without venation, body sparsely setose, legs rather short and slender, and shape of the veinless tegmina, Ekpagloderma is classified in the subfamily Aglyptodermatinae. Ekpagloderma not only has the typical features of the Aglyptodermatinae, but also exhibits a more primitive slender segmented cerci, which is different from all other genera of Eodermaptera. In fact, the diversity of Eodermaptera as known today indicates some of the challenges in understanding the suborder and whether or not it is monophyletic as historically construed, or if the separation of Turanodermaptera is justified.

9.
J Cell Mol Med ; 27(15): 2123-2135, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37278388

RESUMO

Porphyromonas gingivalis (P. gingivalis) is a pivotal pathogen of periodontitis. Our previous studies have confirmed that mitochondrial dysfunction in the endothelial cells caused by P. gingivalis was dependent on Drp1, which may be the mechanism of P. gingivalis causing endothelial dysfunction. Nevertheless, the signalling pathway induced the mitochondrial dysfunction remains unclear. The purpose of this study was to investigate the role of the RhoA/ROCK1 pathway in regulating mitochondrial dysfunction caused by P. gingivalis. P. gingivalis was used to infect EA.hy926 cells (endothelial cells). The expression and activation of RhoA and ROCK1 were assessed by western blotting and pull-down assay. The morphology of mitochondria was observed by mitochondrial staining and transmission electron microscopy. Mitochondrial function was measured by ATP content, mitochondrial DNA and mitochondrial permeability transition pore openness. The phosphorylation and translocation of Drp1 were evaluated using western blotting and immunofluorescence. The role of the RhoA/ROCK1 pathway in mitochondrial dysfunction was investigated using RhoA and ROCK1 inhibitors. The activation of RhoA/ROCK1 pathway and mitochondrial dysfunction were observed in P. gingivalis-infected endothelial cells. Furthermore, RhoA or ROCK1 inhibitors partly prevented mitochondrial dysfunction caused by P. gingivalis. The increased phosphorylation and mitochondrial translocation of Drp1 induced by P. gingivalis were both blocked by RhoA and ROCK1 inhibitors. In conclusion, we demonstrate that the RhoA/ROCK1 pathway was involved in mitochondrial dysfunction caused by P. gingivalis by regulating the phosphorylation and mitochondrial translocation of Drp1. Our research illuminated a possible new mechanism by which P. gingivalis promotes endothelial dysfunction.


Assuntos
Células Endoteliais , Porphyromonas gingivalis , Células Endoteliais/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Quinases Associadas a rho/metabolismo
10.
JACS Au ; 3(6): 1634-1641, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37388691

RESUMO

The field of polyhalogen chemistry, specifically polyhalogen anions (polyhalides), is rapidly evolving. Here, we present the synthesis of three sodium halides with unpredicted chemical compositions and structures (tP10-Na2Cl3, hP18-Na4Cl5, and hP18-Na4Br5), a series of isostructural cubic cP8-AX3 halides (NaCl3, KCl3, NaBr3, and KBr3), and a trigonal potassium chloride (hP24-KCl3). The high-pressure syntheses were realized at 41-80 GPa in diamond anvil cells laser-heated at about 2000 K. Single-crystal synchrotron X-ray diffraction (XRD) provided the first accurate structural data for the symmetric trichloride Cl3- anion in hP24-KCl3 and revealed the existence of two different types of infinite linear polyhalogen chains, [Cl]∞n- and [Br]∞n-, in the structures of cP8-AX3 compounds and in hP18-Na4Cl5 and hP18-Na4Br5. In Na4Cl5 and Na4Br5, we found unusually short, likely pressure-stabilized, contacts between sodium cations. Ab initio calculations support the analysis of structures, bonding, and properties of the studied halogenides.

11.
Front Chem ; 11: 1210081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383952

RESUMO

Chemical reactions between dysprosium and carbon were studied in laser-heated diamond anvil cells at pressures of 19, 55, and 58 GPa and temperatures of ∼2500 K. In situ single-crystal synchrotron X-ray diffraction analysis of the reaction products revealed the formation of novel dysprosium carbides, Dy4C3 and Dy3C2, and dysprosium sesquicarbide Dy2C3 previously known only at ambient conditions. The structure of Dy4C3 was found to be closely related to that of dysprosium sesquicarbide Dy2C3 with the Pu2C3-type structure. Ab initio calculations reproduce well crystal structures of all synthesized phases and predict their compressional behavior in agreement with our experimental data. Our work gives evidence that high-pressure synthesis conditions enrich the chemistry of rare earth metal carbides.

12.
RSC Adv ; 13(21): 14641-14650, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37215753

RESUMO

Enzymatic glucose sensors usually exhibit excellent sensitivity and selectivity but suffer from poor stability due to the negative influence of temperature and humidity on enzyme molecules. As compared to enzymatic glucose sensors, non-enzymatic counterparts are generally more stable but are facing challenges in concurrently improving both sensitivity and selectivity of a trace amount of glucose molecules in physiological samples such as saliva and sweat. Here, a novel non-enzymatic glucose sensor based on nanostructured Cu3Al alloy films has been fabricated by a facile magnetron-sputtering followed by controllable electrochemical etching approach. Since the metal Al is more reductive than Cu, by selectively etching aluminum in the Cu3Al alloys, nanostructured alloy films were obtained with increased surface contact area and electrocatalytic active sites which resulted in enhanced glucose-sensing performance. Thus, non-enzymatic glucose sensors based on nanostructured Cu3Al alloy films not only exhibited a high sensitivity of 1680 µA mM-1 cm-2 but also achieved a reliable selectivity to glucose without interference by other species in physiological samples. Consequently, this study sparked the potential for the development of non-enzymatic biosensors for the continuous monitoring of blood glucose levels with high sensitivity and impressive selectivity for glucose molecules.

13.
Nat Chem ; 15(5): 641-646, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36879075

RESUMO

The recent high-pressure synthesis of pentazolates and the subsequent stabilization of the aromatic [N5]- anion at atmospheric pressure have had an immense impact on nitrogen chemistry. Other aromatic nitrogen species have also been actively sought, including the hexaazabenzene N6 ring. Although a variety of configurations and geometries have been proposed based on ab initio calculations, one that stands out as a likely candidate is the aromatic hexazine anion [N6]4-. Here we present the synthesis of this species, realized in the high-pressure potassium nitrogen compound K9N56 formed at high pressures (46 and 61 GPa) and high temperature (estimated to be above 2,000 K) by direct reaction between nitrogen and KN3 in a laser-heated diamond anvil cell. The complex structure of K9N56-composed of 520 atoms per unit cell-was solved based on synchrotron single-crystal X-ray diffraction and corroborated by density functional theory calculations. The observed hexazine anion [N6]4- is planar and proposed to be aromatic.

14.
Chemistry ; 28(62): e202203123, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36323532

RESUMO

Invited for the cover of this issue are Dominique Laniel (University of Edinburgh), Florian Trybel (University of Linköping), and their colleagues. The image depicts a bridge built of the newly discovered δ-P3 N5 solid with the structure featuring PN6 units, a previously missing connection between the carbon group elements nitrides and chalcogens nitrides. Read the full text of the article at 10.1002/chem.202201998.

15.
Sensors (Basel) ; 22(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080968

RESUMO

Accurate localization in underground coal mining is a challenging technology in coal mine safety production. This paper proposes a low-cost battery-free localization scheme based on depth images, called MineBL. The main idea is to utilize the battery-free low-cost reflective balls as position nodes and realize underground target localization with a series of algorithms. In particular, the paper designs a data enhancement strategy based on small-target reorganization to increase the identification accuracy of tiny position nodes. Moreover, a novel ranging algorithm based on multi-filter cooperative denoising has been proposed, and an optimized weighted centroid location algorithm based on multilateral location errors has been designed to minimize underground localization errors. Many experiments in the indoor laboratories and the underground coal mine laboratories have been conducted, and the experimental results have verified that MineBL has good localization performances, with localization errors less than 30 cm in 95% of cases. Therefore, MineBL has great potential to provide a low-cost and effective solution for precise target localization in complex underground environments.

16.
J Nanobiotechnology ; 20(1): 411, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109732

RESUMO

The major challenge to controlling the COVID pandemic is the rapid mutation rate of the SARS-CoV-2 virus, leading to the escape of the protection of vaccines and most of the neutralizing antibodies to date. Thus, it is essential to develop neutralizing antibodies with broad-spectrum activity targeting multiple SARS-CoV-2 variants. Here, we report a synthetic nanobody (named C5G2) obtained by phage display and subsequent antibody engineering. C5G2 has a single-digit nanomolar binding affinity to the RBD domain and inhibits its binding to ACE2 with an IC50 of 3.7 nM. Pseudovirus assays indicated that monovalent C5G2 could protect the cells from infection with SARS-CoV-2 wild-type virus and most of the viruses of concern, i.e., Alpha, Beta, Gamma and Omicron variants. Strikingly, C5G2 has the highest potency against Omicron BA.1 among all the variants, with an IC50 of 4.9 ng/mL. The cryo-EM structure of C5G2 in complex with the spike trimer showed that C5G2 binds to RBD mainly through its CDR3 at a conserved region that does not overlap with the ACE2 binding surface. Additionally, C5G2 binds simultaneously to the neighboring NTD domain of the spike trimer through the same CDR3 loop, which may further increase its potency against viral infection. Third, the steric hindrance caused by FR2 of C5G2 could inhibit the binding of ACE2 to RBD as well. Thus, this triple-function nanobody may serve as an effective drug for prophylaxis and therapy against Omicron as well as future variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , SARS-CoV-2 , Anticorpos de Domínio Único , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , COVID-19 , SARS-CoV-2/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Glicoproteína da Espícula de Coronavírus
17.
Chemistry ; 28(62): e202201998, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35997073

RESUMO

Non-metal nitrides are an exciting field of chemistry, featuring a significant number of compounds that can possess outstanding material properties. These properties mainly rely on maximizing the number of strong covalent bonds, with crosslinked XN6 octahedra frameworks being particularly attractive. In this study, the phosphorus-nitrogen system was studied up to 137 GPa in laser-heated diamond anvil cells, and three previously unobserved phases were synthesized and characterized by single-crystal X-ray diffraction, Raman spectroscopy measurements and density functional theory calculations. δ-P3 N5 and PN2 were found to form at 72 and 134 GPa, respectively, and both feature dense 3D networks of the so far elusive PN6 units. The two compounds are ultra-incompressible, having a bulk modulus of K0 =322 GPa for δ-P3 N5 and 339 GPa for PN2 . Upon decompression below 7 GPa, δ-P3 N5 undergoes a transformation into a novel α'-P3 N5 solid, stable at ambient conditions, that has a unique structure type based on PN4 tetrahedra. The formation of α'-P3 N5 underlines that a phase space otherwise inaccessible can be explored through materials formed under high pressure.

18.
Front Microbiol ; 13: 901558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722314

RESUMO

Tyrosine sulfation plays a vital role in various biochemical reactions. Although sulfated tyrosine (sTyr) has a similar structure to phosphotyrosine (pTyr), the number of available sTyr sites is significantly less than that of pTyr sites, mainly because of the lack of effective sTyr probes. A few sTyr binders were identified on the basis of structural similarity by engineering the pTyr-binding pocket of an Src Homology 2 (SH2) domain through phage selections against sTyr peptides. Nevertheless, they still interact with pTyr peptides with comparable affinity. This study aims to identify sTyr superbinders using the SH2 domain as a template. We created a distinctive phage selection scheme that separately covered selections against sTyr and pTyr peptides, followed by next-generation sequencing (NGS). After selections, phage pools showed strong enzyme-linked immunosorbent assay (ELISA) signal intensities for both modified peptides, indicating that the variants evolved with a high affinity for these peptides, which causes difficulty in identifying sTyr-specific binders. In contrast, NGS data from selected pools showed significant differences, suggesting the enrichment of sTyr-specific variants during selections. Accordingly, we obtained the sTyr features based on NGS data analysis and prioritized a few potential sTyr binders. The variant SH2-4 showed a stronger affinity for sTyr than pTyr and was superior to previous sTyr binders as measured by the Biolayer Interferometry assay. In summary, we described the strategy of integrating NGS data mining with a novel selection scheme to identify sTyr superbinders.

19.
Sensors (Basel) ; 22(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336425

RESUMO

COVID-19 is currently the biggest threat that challenges all of humankind's health and property. One promising and effective way to control the rapid spreading of this infection is searching for primary close contacts of the confirmed cases. In response, we propose COVID-19 Tracer, a low-cost passive searching system to find COVID-19 patients' close contacts. The main idea is utilizing ubiquitous WiFi probe requests to describe the location similarity, which is then achieved by two designed range-free judgment indicators: location similarity coefficient and close contact distance. We have carried out extensive experiments in a school office building, and the experimental results show an average accuracy of more than 98%, demonstrating our system's effectiveness in judging close contacts. Last but not least, we have developed a prototype system for a school building to find potential close contacts.


Assuntos
COVID-19 , Busca de Comunicante , Busca de Comunicante/métodos , Coleta de Dados , Humanos , Instituições Acadêmicas
20.
Commun Chem ; 5(1): 122, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36697723

RESUMO

Chemical stability of the alkali halides NaCl and KCl has allowed for their use as inert media in high-pressure high-temperature experiments. Here we demonstrate the unexpected reactivity of the halides with metals (Y, Dy, and Re) and iron oxide (FeO) in a laser-heated diamond anvil cell, thus providing a synthetic route for halogen-containing binary and ternary compounds. So far unknown chlorides, Y2Cl and DyCl, and chloride carbides, Y2ClC and Dy2ClC, were synthesized at ~40 GPa and 2000 K and their structures were solved and refined using in situ single-crystal synchrotron X-ray diffraction. Also, FeCl2 with the HP-PdF2-type structure, previously reported at 108 GPa, was synthesized at ~160 GPa and 2100 K. The results of our ab initio calculations fully support experimental findings and reveal the electronic structure and chemical bonding in these compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...