Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737737

RESUMO

Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.


Assuntos
Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas , Triticum , Triticum/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética , Temperatura Alta/efeitos adversos , Família Multigênica , Cromossomos de Plantas/genética , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica
2.
Heliyon ; 10(7): e28060, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560194

RESUMO

In this research, we unveil the medical potential of pearls by identifying a novel bioactive peptide within them for the first time. The peptide, termed KKCHFWPFPW, emerges as a pioneering angiotensin I-converting enzyme (ACE) inhibitor, originating from the pearl matrix of Pinctada fucata. Employing quadrupole time-of-flight mass spectrometry, this peptide was meticulously selected and pinpointed. With a molecular weight of 1417.5 Da and a theoretical isoelectric point of 9.31, its inhibitory potency was demonstrated through a half-maximal inhibitory concentration (IC50) of 4.17 µM, established via high-performance liquid chromatography. The inhibition of ACE by this peptide was found to be competitive, as revealed by Lineweaver-Burk plot analysis, where an increase in peptide concentration correlated with an enhanced rate of ACE inhibition. To delve into the interaction between KKCHFWPFPW and ACE, molecular docking simulations were conducted using the Maestro 2022-1 Glide software, shedding light on the inhibitory mechanism. This investigation suggests that peptides derived from the P. martensii pearl matrix hold promise as a novel source for antihypertensive agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA