Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 257(1): 4, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434125

RESUMO

MAIN CONCLUSION: In Magnolia polytepala, the formation of floral organization and color was attributed to tissue-dependent differential expression levels of MADS-box genes and anthocyanin biosynthetic genes. In angiosperms, the diversity of floral morphology and organization suggests its value in exploring plant evolution. Magnolia polytepala, an endemic basal angiosperm species in China, possesses three green sepal-like tepals in the outermost whorl and pink petal-like tepals in the inner three whorls, forming unique floral morphology and organization. However, we know little about its underlying molecular regulatory mechanism. Here, we first reported the full-length transcriptome of M. polytepala using PacBio sequencing. A total of 16 MADS-box transcripts were obtained from the transcriptome data, including floral homeotic genes (e.g., MpAPETALA3) and other non-floral homeotic genes (MpAGL6, etc.). Phylogenetic analysis and spatial expression pattern reflected their putative biological function as their homologues in Arabidopsis. In addition, nine structural genes involved in anthocyanin biosynthesis pathway had been screened out, and tepal color difference was significantly associated with their tissue-dependent differential expression levels. This study provides a relatively comprehensive investigation of the MADS-box family and anthocyanin biosynthetic genes in M. polytepala, and will facilitate our understanding of the regulatory mechanism underlying floral organization and color in basal angiosperms.


Assuntos
Arabidopsis , Magnolia , Magnoliaceae , Magnoliopsida , Magnoliopsida/genética , Magnoliopsida/metabolismo , Magnolia/genética , Magnolia/metabolismo , Proteínas de Domínio MADS/metabolismo , Magnoliaceae/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Antocianinas/genética , Evolução Molecular , Arabidopsis/genética
2.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142871

RESUMO

Flowering is a pivotal developmental process in response to the environment and determines the start of a new life cycle in plants. Woody plants usually possess a long juvenile nonflowering phase followed by an adult phase with repeated flowering cycles. The molecular mechanism underlying flowering regulation in woody plants is believed to be much more complex than that in annual herbs. In this review, we briefly describe the successive but distinct flowering processes in perennial trees, namely the vegetative phase change, the floral transition, floral organogenesis, and final blooming, and summarize in detail the most recent advances in understanding how woody plants regulate flowering through dynamic gene expression. Notably, the florigen gene FLOWERING LOCUS T(FT) and its antagonistic gene TERMINAL FLOWER 1 (TFL1) seem to play a central role in various flowering transition events. Flower development in different taxa requires interactions between floral homeotic genes together with AGL6 conferring floral organ identity. Finally, we illustrate the issues and corresponding measures of flowering regulation investigation. It is of great benefit to the future study of flowering in perennial trees.


Assuntos
Florígeno , Regulação da Expressão Gênica de Plantas , Florígeno/metabolismo , Flores , Plantas Geneticamente Modificadas/metabolismo , Reprodução
3.
Mol Genet Genomics ; 296(1): 207-222, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33146745

RESUMO

The floral transition is a critical developmental switch in plants, and has profound effects on the flower production and yield. Magnolia × soulangeana 'Changchun' is known as a woody ornamental plant, which can bloom in spring and summer, respectively. In this study, anatomical observation, physiological measurement, transcriptome, and small RNA sequencing were performed to investigate potential endogenous regulatory mechanisms underlying floral transition in 'Changchun'. Transition of the shoot apical meristem from vegetative to reproductive growth occurred between late April and early May. During this specific developmental process, a total of 161,645 unigenes were identified, of which 73,257 were significantly differentially expressed, while a number of these two categories of miRNAs were 299 and 148, respectively. Further analysis of differentially expressed genes (DEGs) revealed that gibberellin signaling could regulate floral transition in 'Changchun' in a DELLA-dependent manner. In addition, prediction and analysis of miRNA targeted genes suggested that another potential molecular regulatory module was mediated by the miR172 family and other several novel miRNAs (Ms-novel_miR139, Ms-novel_miR229, and Ms-novel_miR232), with the participation of up- or down-regulating genes, including MsSVP, MsAP2, MsTOE3, MsAP1, MsGATA6, MsE2FA, and MsMDS6. Through the integrated analysis of mRNA and miRNA, our research results will facilitate the understanding of the potential molecular mechanism underlying floral transition in 'Changchun', and also provide basic experimental data for the plant germplasm resources innovation in Magnolia.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Giberelinas/metabolismo , Magnolia/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA de Plantas/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Magnolia/crescimento & desenvolvimento , Magnolia/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , MicroRNAs/classificação , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , RNA de Plantas/classificação , RNA de Plantas/metabolismo , Transdução de Sinais , Transcriptoma
4.
Tree Physiol ; 41(3): 491-507, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33079187

RESUMO

Sheath senescence is an important part of bamboo shoot development during the fast growth stage. However, no information has been reported about this distinctive process until now. Using multiple approaches, we found that sheath senescence is a complex process that occurs sequentially with chloroplast corruption, chlorophyll degradation and water loss. Reactive oxygen species (ROS), salicylic acid and abscisic acid also accumulate in the senescing sheath. Transcriptome analysis showed that NAC and WRKY transcription factors, such as NAC2 and WRKY75, as well as their possible downstream target genes, such as those involved in ROS production, proteolysis and nutrition recycling, constitute the gene network of the bamboo sheath senescence process. Furthermore, the initiation of sheath senescence might be triggered by hexokinase genes, such as HXK6, which is localized to the mitochondrion and could promote leaf senescence when overexpressed in Arabidopsis. Sheath senescence occurs after the growth decrease of the internodes, which provides assimilates. The slowing of internode growth possibly results in sugar accumulation, such as glucose, in the sheath, which finally upregulates hexokinase genes and initiates sheath senescence. These findings reveal that sheath senescence is a multilevel regulation process and has a close link to the corresponding internode growth, which provides new insights into the shoot development of bamboo during the fast growth stage.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ácido Salicílico , Fatores de Transcrição
5.
Gene ; 736: 144410, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32007581

RESUMO

Magnoliaceae is a primitive taxon in the angiosperms, comprising approximately 240 species in 2-17 genera. Many of them have been widely cultivated due to their horticultural and medicinal value. However, there are uncertainties and controversies about the delimitation of the genera except Liriodendron L. in this family. The Yulania taxa is also the focus of dispute at the genus and section levels. In this study, we compared ten Yulania plastomes, including the newly sequenced M. polytepala. The plastome-wide comparative analysis demonstrated that 1) Yulania cp genomes were highly conserved, and the majority differences existed in IR regions with the loss/retention of trnV-GAC or ycf15 gene, 2) mutational hotspots with high levels of nucleotide diversity (Pi > 0.02) existed in both coding (rpoA, and ycf1) and no-coding (ccsA-ndhD, ndhE-ndhG, ndhF-rpl32, petA-psbJ, rpl32-trnL, rps3-rps19, and trnH-psbA) regions among the genus Yulania. Combined with other data from Magnoliaceae plastomes, our reconstructed molecular phylogenetic tree revealed that Yulania is monophyletic, separated from the genus Magnolia L. (=Magnolia subg. Magnolia L.), but seems a sister of Michelia L. Moreover, M. polytepala which belongs to the genus Yulania is most closely related to M. liliiflora. All these results indicated that plastome data may contribute to investigating taxonomy, population genetics and phylogeny of Yulania.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos/genética , Genoma de Planta/genética , Magnolia/genética , Magnoliaceae/genética , Genética Populacional/métodos , Genômica/métodos , Magnoliopsida/genética , Filogenia
6.
Genes (Basel) ; 11(1)2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877931

RESUMO

Magnolia × soulangeana 'Changchun' are trees that bloom in spring and summer respectively after flower bud differentiation. Here, we use phenological and morphological observation and RNA-seq technology to study the molecular basis of flowering initiation in 'Changchun'. During the process of flowering initiation in spring and summer, the growth of expanded flower buds increased significantly, and their shape was obviously enlarged, which indicated that flowering was initiated. A total of 168,120 expressed genes were identified in spring and summer dormant and expanded flower buds, of which 11,687 genes showed significantly differential expression between spring and summer dormant and expanded flower buds. These differentially expressed genes (DEGs) were mainly involved in plant hormone signal transduction, metabolic processes, cellular components, binding, and catalytic activity. Analysis of differential gene expression patterns revealed that gibberellin signaling, and some transcription factors were closely involved in the regulation of spring and summer flowering initiation in 'Changchun'. A qRT-PCR (quantitative Real Time Polymerase Chain Reaction) analysis showed that BGISEQ-500 sequencing platform could truly reflect gene expression patterns. It also verified that GID1B (GIBBERELLIN INSENSITIVE DWARF1 B), GID1C, SPL8 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8), and GASA (GIBBERELLIC ACID-STIMULATED ARABIDOPSIS) family genes were expressed at high levels, while the expression of SPY (SPINDLY) was low during spring and summer flowering initiation. Meanwhile, the up- and down-regulated expression of, respectively, AGL6 (AGAMOUS-LIKE 6) and DREB3 (DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 3), AG15, and CDF1 (CYCLIC DOF FACTOR 1) might also be involved in the specific regulation of spring and summer flowering initiation. Obviously, flowering initiation is an important stage of the flowering process in woody plants, involving the specific regulation of relevant genes and transcription factors. This study provides a new perspective for the regulation of the flowering process in perennial woody plants.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Magnolia/genética , Quimera/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Giberelinas/metabolismo , Magnolia/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética
7.
DNA Cell Biol ; 36(5): 354-366, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28277741

RESUMO

Crape myrtle (Lagerstroemia indica) is a woody ornamental plant popularly grown because of its long-lasting, midsummer blooms and beautiful colors. The GL1 dominant mutant is the first chlorophyll-less mutant identified in crape myrtle. It was obtained from a natural yellow leaf bud mutation. We previously revealed that leaf color of the GL1 mutant is affected by light intensity. However, the mechanism of the GL1 mutant on light response remained unclear. The acclimation response of mutant and wild-type (WT) plants was assessed in a time series after transferring from low light (LL) to high light (HL) by analyzing chlorophyll synthesis precursor content, photosynthetic performance, and gene expression. In LL conditions, coproporphyrinogen III (Coprogen III) content had the greatest amount of accumulation in the mutant compared with WT, increasing by 100%. This suggested that the yellow leaf phenotype of the GL1 dominant mutant might be caused by disruption of coproporphyrinogen III oxidase (CPO) biosynthesis. Furthermore, the candidate gene, oxygen-independent CPO (HEMN), might only affect expression of upstream genes involved in chlorophyll metabolism in the mutant. Moreover, two genes, photosystem II (PSII) 10 kDa protein (psbR) and chlorophyll a/b binding protein gene (CAB1), had decreased mRNA levels in the GL1 mutant within the first 96 h following LL/HL transfer compared with the WT. Hierarchical clustering revealed that these two genes shared a similar expression trend as the oxygen-dependent CPO (HEMF). These findings provide evidence that GL1 is highly coordinated with PSII stability and chloroplast biogenesis.


Assuntos
Clorofila/genética , Lagerstroemia/genética , Mutação , Aclimatação/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes Dominantes , Teste de Complementação Genética , Luz , Fotossíntese/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas
8.
Z Naturforsch C J Biosci ; 71(7-8): 201-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27248120

RESUMO

Recently, neem tree (Azadirachta indica) extract (NTE) has been reported to have various antitumor activities against gastric, breast, prostate, and skin cancer, respectively. The current study was designed to evaluate the effect of NTE on hepatic cancer in a mouse model. The possible side effects elicited by NTE were also evaluated. The components in NTE were analyzed by liquid chromatography-mass spectrometry (LC-MS). H22 cells-bearing Kumming mice were generated by injecting H22 cells subcutaneously into the right forelimb armpit of the mice. Then the mice were treated daily for 27 days with NTE (150, 300, and 600 mg/kg body weight) by intragastric administration, using carboxymethyl cellulose (CMC, 1%) as blank control and cyclophosphamide (CTX, 20 mg/kg) as positive control. The antitumor effect of NTE was evaluated by assessment of survival rate, body weight, tumor volume and weight, tumor histology, thymus and spleen indexes, and liver histology. The tumor weight and volume in groups of NTE and CTX were significantly lower than those in the CMC group. The survival rate in the NTE group receiving the high dose (600 mg/kg) was significantly higher than that in the CTX and CMC groups. Compared with CTX, NTE was observed to have a tumor-specific cytotoxicity without impairing the normal liver tissue. Additionally, the higher indexes of thymus and spleen indicated that NTE could facilitate the growth of immune organs. The results indicate that NTE is a promising candidate for the antitumor treatment with high efficacy and safety.


Assuntos
Azadirachta/química , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Extratos Vegetais/farmacologia , Carga Tumoral/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Estimativa de Kaplan-Meier , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Fitoterapia , Baço/efeitos dos fármacos , Baço/patologia , Timo/efeitos dos fármacos , Timo/patologia
9.
Ying Yong Sheng Tai Xue Bao ; 16(5): 982-4, 2005 May.
Artigo em Chinês | MEDLINE | ID: mdl-16110684

RESUMO

This paper dealt with the effects of Pb2+, Cd2+ and their combined pollution on the contents of chlorophyll, potassium and calcium in Thuidium cymbifolium. The results showed that except at 0.1 mg Cd2+.L(-1), the chlorophyll content decreased with increasing Pb2+ and Cd2+ concentrations, which was 18% of the control at 100 mg Cd2+.L(-1), and decreased by 48.6% at 200 mg Pb2+.L(-1). The potassium and calcium contents also decreased with increasing pollutants concentrations, being decreased by 61.1% at 100 mg Cd2+.L(-1). Cd2+ had a stronger toxicity than Pb2+, and the toxicity of their combined pollution was stronger than that of each pollutant. Pb2+ could increase the toxicity of Cd2+.


Assuntos
Cádmio/efeitos adversos , Monitoramento Ambiental/métodos , Poluentes Ambientais/efeitos adversos , Chumbo/efeitos adversos , Plantas/metabolismo , Cádmio/análise , Cálcio/metabolismo , Poluentes Ambientais/análise , Chumbo/análise , Plantas/efeitos dos fármacos , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...