Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274077

RESUMO

In the development of wearable electronic devices, the composite modification of conductive polymers and single-walled carbon nanotubes (SWCNTs) has become a burgeoning research area. This study presents the synthesis of a novel polythiophene derivative, poly(3-alkoxythiophene) (P3(TEG)T), with alkoxy side chains. Different molecular weight variants of P3(TEG)T (P1-P4) were prepared and combined with SWCNTs to form composite materials. Density functional theory (DFT) calculations revealed a reduced bandgap for P3(TEG)T. Raman spectroscopy demonstrated π-π interactions between P3(TEG)T and SWCNTs, facilitating the dispersion of single-walled carbon nanotubes and the formation of a continuous conductive network. Among the composite films, P4/SWCNTs-0.9 exhibited the highest thermoelectric performance, with a power factor (PF) value of 449.50 µW m-1 K-2. The fabricated flexible thermoelectric device achieved an output power of 3976.92 nW at 50 K, with a tensile strength of 59.34 MPa for P4/SWCNTs. Our findings highlight the strong interfacial interactions between P3(TEG)T and SWCNTs in the composite material, providing an effective charge transfer pathway. Furthermore, an improvement in the tensile performance was observed with an increase in the molecular weight of the polymer used in the composite, offering a viable platform for the development of high-performance flexible organic thermoelectric materials.

2.
Polymers (Basel) ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611201

RESUMO

In order to develop flexible thermoelectric materials with thermoelectric and mechanical properties, in this study, we designed and synthesized polythiophene derivatives with branched ethylene glycol polar side-chains named P3MBTEMT, which were used in combination with single-walled carbon nanotubes (SWCNTs) to prepare composite thin films and flexible thermoelectric devices. A comparison was made with a polymer named P3(TEG)T, which has a polar alkoxy linear chain. The UV-vis results indicated that the larger steric hindrances of the branched ethylene glycol side-chain in P3MBTEMT could inhibit its self-aggregation and had a stronger interaction with the SWCNTs compared to that of P3(TEG)T, which was also confirmed using Raman spectroscopy. When the mass ratio of SWCNTs to P3MBTEMT was 9:1 (represented as P3MBTEMT/SWCNTs-0.9), the composite film exhibited the highest thermoelectric properties with a power factor of 446.98 µW m-1 K-2, which was more than two times higher than that of P3(TEG)T/SWCNTs-0.9 (215.08 µW m-1 K-2). The output power of the thermoelectric device with P3MBTEMT/SWCNTs-0.9 was 2483.92 nW at 50 K, which was 1.66 times higher than that of P3(TEG)T/SWCNTs-0.9 (1492.65 nW). Furthermore, the P3MBTEMT/SWCNTs-0.5 showed superior mechanical properties compared to P3(TEG)T/SWCNTs-0.5. These results indicated that the mechanical and thermoelectric performances of polymer/SWCNT composites could be significantly improved by adding polar branched side-chains to conjugated polymers. This study provided a new strategy for creating high-performing novel flexible thermoelectric materials.

3.
RSC Adv ; 9(20): 11585-11588, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35520223

RESUMO

Asymmetric allylic substitution of Morita-Baylis-Hillman (MBH) carbonates with less-nucleophilic phenols mediated by nucleophilic amine catalysis was successfully developed. A variety of substituted aryl allyl ethers were afforded with moderate to high yields with excellent enantioselectivities. The chiral MBH alcohol could be easily accessed from the corresponding aryl allyl ether.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA