Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
1.
Cell Res ; 34(4): 309-322, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332200

RESUMO

Synthetic biology confers new functions to hosts by introducing exogenous genetic elements, yet rebuilding complex traits that are based on large-scale genetic information remains challenging. Here, we developed a CRISPR/Cas9-mediated haploidization method that bypasses the natural process of meiosis. Based on the programmed haploidization in yeast, we further developed an easy-to-use method designated HAnDy (Haploidization-based DNA Assembly and Delivery in yeast) that enables efficient assembly and delivery of large DNA, with no need for any fussy in vitro manipulations. Using HAnDy, a de novo designed 1.024 Mb synthetic accessory chromosome (synAC) encoding 542 exogenous genes was parallelly assembled and then directly transferred to six phylogenetically diverse yeasts. The synAC significantly promotes hosts' adaptations and increases the scope of the metabolic network, which allows the emergence of valuable compounds. Our approach should facilitate the assembly and delivery of large-scale DNA for expanding and deciphering complex biological functions.


Assuntos
Cromossomos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Sistemas CRISPR-Cas/genética
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338776

RESUMO

Rice effective panicle is a major trait for grain yield and is affected by both the genetic tiller numbers and the early tillering vigor (ETV) traits to survive environmental adversities. The mechanism behind tiller bud formation has been well described, while the genes and the molecular mechanism underlying rice-regulating ETV traits are unclear. In this study, the candidate genes in regulating ETV traits have been sought by quantitative trait locus (QTL) mapping and bulk-segregation analysis by resequencing method (BSA-seq) conjoint analysis using rice backcross inbred line (BIL) populations, which were cultivated as late-season rice of double-cropping rice systems. By QTL mapping, seven QTLs were detected on chromosomes 1, 3, 4, and 9, with the logarithm of the odds (LOD) values ranging from 3.52 to 7.57 and explained 3.23% to 12.98% of the observed phenotypic variance. By BSA-seq analysis, seven QTLs on chromosomes 1, 2, 4, 5, 7, and 9 were identified using single-nucleotide polymorphism (SNP) and insertions/deletions (InDel) index algorithm and Euclidean distance (ED) algorithm. The overlapping QTL resulting from QTL mapping and BSA-seq analysis was shown in a 1.39 Mb interval on chromosome 4. In the overlap interval, six genes, including the functional unknown genes Os04g0455650, Os04g0470901, Os04g0500600, and ethylene-insensitive 3 (Os04g0456900), sialyltransferase family domain containing protein (Os04g0506800), and ATOZI1 (Os04g0497300), showed the differential expression between ETV rice lines and late tillering vigor (LTV) rice lines and have a missense base mutation in the genomic DNA sequences of the parents. We speculate that the six genes are the candidate genes regulating the ETV trait in rice, which provides a research basis for revealing the molecular mechanism behind the ETV traits in rice.


Assuntos
Oryza , Locos de Características Quantitativas , Oryza/genética , Estações do Ano , Mapeamento Cromossômico/métodos , Fenótipo
3.
Synth Syst Biotechnol ; 9(1): 176-185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38348399

RESUMO

Polymyxin B, produced by Paenibacillus polymyxa, is used as the last line of defense clinically. In this study, exogenous mixture of precursor amino acids increased the level and proportion of polymyxin B1 in the total of polymyxin B analogs of P. polymyxa CJX518-AC (PPAC) from 0.15 g/L and 61.8 % to 0.33 g/L and 79.9 %, respectively. The co-culture of strain PPAC and recombinant Corynebacterium glutamicum-leu01, which produces high levels of threonine, leucine, and isoleucine, increased polymyxin B1 production to 0.64 g/L. When strains PPAC and C. glu-leu01 simultaneously inoculated into an optimized medium with 20 g/L peptone, polymyxin B1 production was increased to 0.97 g/L. Furthermore, the polymyxin B1 production in the co-culture of strains PPAC and C. glu-leu01 increased to 2.21 g/L after optimized inoculation ratios and fermentation medium with 60 g/L peptone. This study provides a new strategy to improve polymyxin B1 production.

4.
J Nat Prod ; 87(1): 28-37, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38204395

RESUMO

Fengycin has great potential for applications in biological control because of its biosafety and degradability. In this study, the addition of exogenous precursors increased fengycin production by Bacillus subtilis. Corynebacterium glutamicum was engineered to produce high levels of precursors (Thr, Pro, Val, and Ile) to promote the biosynthesis of fengycin. Furthermore, recombinant C. glutamicum and Yarrowia lipolytica providing amino acid and fatty acid precursors were co-cultured to improve fengycin production by B. subtilis in a three-strain artificial consortium, in which fengycin production was 2100 mg·L-1. In addition, fengycin production by the consortium in a 5 L bioreactor reached 3290 mg·L-1. Fengycin had a significant antifungal effect on Rhizoctonia solani, which illustrates its potential as a food preservative. Taken together, this work provides a new strategy for improving fengycin production by a microbial consortium and metabolic engineering.


Assuntos
Bacillus subtilis , Consórcios Microbianos , Bacillus subtilis/química , Lipopeptídeos/química , Antifúngicos/química
5.
Crit Rev Biotechnol ; : 1-21, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246753

RESUMO

Stress tolerance is a vital attribute for all living beings to cope with environmental adversities. IrrE (also named PprI) from Deinococcus radiodurans enhances resistance to extreme radiation stress by functioning as a global regulator, mediating the transcription of genes involved in deoxyribonucleic acid (DNA) damage response (DDR). The expression of IrrE augmented the resilience of various species to heat, radiation, oxidation, osmotic stresses and inhibitors, encompassing bacterial, fungal, plant, and mammalian cells. Moreover, IrrE was employed in a global regulator engineering strategy to broaden its applications in stress tolerance. The regulatory impacts of heterologously expressed IrrE have been investigated at the molecular and systems level, including the regulation of genes, proteins, modules, or pathways involved in DNA repair, detoxification proteins, protective molecules, native regulators and other aspects. In this review, we discuss the regulatory role and mechanism of IrrE in the antiradiation response of D. radiodurans. Furthermore, the applications and regulatory effects of heterologous expression of IrrE to enhance abiotic stress tolerance are summarized in particular.

6.
Chemistry ; 30(15): e202304134, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38205620

RESUMO

A 14-electron ternary anionic CBe2 H5 - cluster containing a planar tetracoordinate carbon (ptC) atom is designed herein. Remarkably, it can be stabilized by only two beryllium atoms with both π-acceptor/σ-donor properties and two hydrogen atoms, which means that the conversion from planar methane (transition state) to ptC species (global minimum) requires the substitution of only two hydrogen atoms. Moreover, two ligand H atoms exhibit alternate rotation, giving rise to interesting dynamic fluxionality in this cluster. The electronic structure analysis reveals the flexible bonding positions of ligand H atoms due to C-H localized bonds, highlighting the rotational fluxionality in the cluster, and two CBe2 3c-2e delocalized bonds endow its rare 2σ/2π double aromaticity. Unprecedentedly, the fluxional process exhibits a conversion in the type of bonding (σ bond↔π bond), which is an uncommon fluxional mechanism. The cluster can be seen as an attempt to apply planar hypercoordinate carbon species to molecular motors.

7.
Biomater Sci ; 12(3): 564-580, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37975197

RESUMO

Biomacromolecules, such as proteins, nucleic acids and polysaccharides, are widely distributed in the human body, and some of them have been recognized as the targets of drugs for disease theranostics. Drugs typically act on targets in two ways: non-covalent bond and covalent bond. Non-covalent bond-based drugs have some disadvantages, such as structural instability and environmental sensitivity. Covalent interactions between drugs and targets have a longer action time, higher affinity and controllability than non-covalent interactions of conventional drugs. With the development of artificial intelligence, covalent drugs have received more attention and have been developed rapidly in pharmaceutical research in recent years. From the perspective of covalent drugs, this review summarizes the design methods and the effects of covalent drugs. Finally, we discuss the application of covalent peptide drugs and expect to provide a new reference for cancer treatment.


Assuntos
Ácidos Nucleicos , Medicina de Precisão , Humanos , Inteligência Artificial , Peptídeos , Proteínas/química , Ácidos Nucleicos/química
8.
Biotechnol Adv ; 70: 108274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37913947

RESUMO

Bioconversion of bioresources/wastes (e.g., lignin, chemical pulping byproducts) represents a promising approach for developing a bioeconomy to help address growing energy and materials demands. Rhodococcus, a promising microbial strain, utilizes numerous carbon sources to produce lipids, which are precursors for synthesizing biodiesel and aviation fuels. However, compared to chemical conversion, bioconversion involves living cells, which is a more complex system that needs further understanding and upgrading. Various wastes amenable to bioconversion are reviewed herein to highlight the potential of Rhodococci for producing lipid-derived bioproducts. In light of the abundant availability of these substrates, Rhodococcus' metabolic pathways converting them to lipids are analyzed from a "beginning-to-end" view. Based on an in-depth understanding of microbial metabolic routes, genetic modifications of Rhodococcus by employing emerging tools (e.g., multiplex genome editing, biosensors, and genome-scale metabolic models) are presented for promoting the bioconversion. Co-solvent enhanced lignocellulose fractionation (CELF) strategy facilitates the generation of a lignin-derived aromatic stream suitable for the Rhodococcus' utilization. Novel alkali sterilization (AS) and elimination of thermal sterilization (ETS) approaches can significantly enhance the bioaccessibility of lignin and its derived aromatics in aqueous fermentation media, which promotes lipid titer significantly. In order to achieve value-added utilization of lignin, biodiesel and aviation fuel synthesis from lignin and lipids are further discussed. The possible directions for unleashing the capacity of Rhodococcus through synergistically modifying microbial strains, substrates, and fermentation processes are proposed toward a sustainable biological lignin valorization.


Assuntos
Lignina , Rhodococcus , Lignina/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Biocombustíveis , Fermentação , Lipídeos , Biomassa
9.
ACS Synth Biol ; 12(12): 3635-3645, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016187

RESUMO

Caffeic acid (CA)-derived phenethyl ester (CAPE) and phenethyl amide (CAPA) are extensively investigated bioactive compounds with therapeutic applications such as antioxidant, anti-inflammatory, and anticarcinogenic properties. To construct microbial cell factories for production of CAPE or CAPA is a promising option given the limitation of natural sources for product extraction and the environmental toxicity of the agents used in chemical synthesis. We reported the successful biosynthesis of caffeic acid in yeast previously. Here in this work, we further constructed the downstream synthetic pathways in yeast for biosynthesis of CAPE and CAPA. After combinatorial engineering of yeast chassis based on the rational pathway engineering method and library-based SCRaMbLE method, we finally obtained the optimal strains that respectively produced 417 µg/L CAPE and 1081 µg/L CAPA. Two screened gene targets of ΔHAM1 and ΔYJL028W were discovered to help improve the product synthesis capacity. This is the first report of the de novo synthesis of CAPA from glucose in an engineered yeast chassis. Future work on enzyme and chassis engineering will further support improving the microbial cell factories for the production of CA derivatives.


Assuntos
Amidas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica , Ácidos Cafeicos/química , Ésteres
10.
Nat Prod Res ; : 1-6, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874658

RESUMO

Two undescribed steroids, named (15 R)-2,15-dihydroxypregna-1,4-dien-3,16-dione (1) and 2,15-dihydroxypregna-1,4,14-trien-3,16-dione (2), were isolated from the aerial parts of Munronia pinnata (Wall.) W. Theob. The structure elucidation of two compounds was performed by using spectroscopic methods and comparing the literature. Compound 2 exhibited inhibitory effect against PTP-1B with an IC50 value of 152.07 ± 3.33 µM, and compound 1 was inactive.

11.
Phys Chem Chem Phys ; 25(39): 26443-26454, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37740349

RESUMO

Boron-based nanoclusters show unique geometric structures, nonclassical chemical bonding, and dynamic structural fluxionality. We report here on the theoretical prediction of a binary Pd3B26 cluster, which is composed of a triangular Pd3 core and a tubular double-ring B26 unit in a coaxial fashion, as identified through global structural searches and electronic structure calculations. Molecular dynamics simulations indicate that in the core-shell alloy cluster, the B26 double-ring unit can rotate freely around its Pd3 core at room temperature and beyond. The intramolecular rotation is virtually barrier free, thus giving rise to an antifriction bearing system (or ball bearing) at the nanoscale. The dimension of the dynamic system is only 0.66 nm. Chemical bonding analysis reveals that Pd3B26 cluster possesses double 14π/14σ aromaticity, following the (4n + 2) Hückel rule. Among 54 pairs of valence electrons in the cluster, the overwhelming majority are spatially isolated from each other and situated on either the B26 tube or the Pd3 core. Only one pair of electrons are primarily responsible for chemical bonding between the tube and the core, which greatly weaken the bonding within the Pd3 core and offers structural flexibility. This is a key mechanism that effectively diminishes the intramolecular rotation barrier and facilitates dynamic structural fluxionality of the system. The current work enriches the field of nanorotors and nanomachines.

12.
Chemistry ; 29(67): e202302672, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695132

RESUMO

Achieving a planar hypercoordinate arrangement of s-block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star-like phBe cluster (Be©Be6 Cl6 ). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal-ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability.

13.
Biotechnol J ; 18(11): e2300137, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37529889

RESUMO

The occurrence of random mutations can increase the diversity of the genome and promote the evolutionary process of organisms. High efficiency mutagenesis techniques significantly accelerate the evolutionary process. In this work, we describe a targeted mutagenesis system named MutaT7trans to significantly increase mutation rate and generate mutations across all four nucleotides in yeast. We constructed different DNA-repairing enzyme-PmCDA1-T7 RNA polymerase (T7 RNAP) fusion proteins, achieved targeted mutagenesis by flanking the target gene with T7 promoters, and tuned the mutation spectra by introducing different DNA-repairing enzymes. With this mutagenesis tool, the proportion of non-C â†’ T mutations was 10-11-fold higher than the cytidine deaminase-based evolutionary tools, and the transversion mutation frequency was also elevated. The mutation rate of the target gene was significantly increased to 5.25 × 10-3 substitutions per base (s. p. b.). We also demonstrated that MutaT7trans could be used to evolve the CrtE, CrtI, and CrtYB gene in the ß-carotene biosynthesis process and generate different types of mutations.


Assuntos
Citidina Desaminase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Mutação , Mutagênese , DNA
14.
Front Microbiol ; 14: 1207196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396390

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with major risks to human health. Biological degradation is environmentally friendly and the most appealing remediation method for a wide range of persistent pollutants. Meanwhile, due to the large microbial strain collection and multiple metabolic pathways, PAH degradation via an artificial mixed microbial system (MMS) has emerged and is regarded as a promising bioremediation approach. The artificial MMS construction by simplifying the community structure, clarifying the labor division, and streamlining the metabolic flux has shown tremendous efficiency. This review describes the construction principles, influencing factors, and enhancement strategies of artificial MMS for PAH degradation. In addition, we identify the challenges and future opportunities for the development of MMS toward new or upgraded high-performance applications.

15.
Bioresour Technol ; 386: 129552, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499927

RESUMO

Lignocellulosic biomass (LCB) is the promising feedstock for value-added products, which would contribute to the bioeconomy and sustainable development. The efficient pretreatment is still required in the biorefinery of LCB. To make a simultaneous utilization of carbohydrates and lignin, a novel easy-recycled ethylenediamine (EDA) pretreatment was designed and evaluated in the present study. The results highlighted that this pretreatment yielded 96% glucose and 70% xylose in enzymatic hydrolysis. It simultaneously promoted the depolymerization of lignin into small molecules and functionalized the yielded lignin with Schiff base and amide structures. These animated-lignins showed a pH-responsive behavior and the excellent flocculation capacity by reducing more than 90% turbidity of kaolin suspensions. Therefore, easy-recycled EDA pretreatment hold the promise to simultaneously enhance the enzymatic hydrolysis of carbohydrates and endowed the new functionality of lignin toward downstream valorization, which improved the process feasibility and potentially enable the sustainability of LCB utilization.


Assuntos
Carboidratos , Lignina , Lignina/química , Hidrólise , Glucose/química , Biomassa , Etilenodiaminas
16.
Nucleic Acids Res ; 51(15): 8283-8292, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37486765

RESUMO

As an enabling technique of synthetic biology, the scale of DNA assembly largely determines the scale of genetic manipulation. However, large DNA assembly technologies are generally cumbersome and inefficient. Here, we developed a YLC (yeast life cycle)-assembly method that enables in vivo iterative assembly of large DNA by nesting cell-cell transfer of assembled DNA in the cycle of yeast mating and sporulation. Using this method, we successfully assembled a hundred-kilobase (kb)-sized endogenous yeast DNA and a megabase (Mb)-sized exogenous DNA. For each round, over 104 positive colonies per 107 cells could be obtained, with an accuracy ranging from 67% to 100%. Compared with other Mb-sized DNA assembly methods, this method exhibits a higher success rate with an easy-to-operate workflow that avoid in vitro operations of large DNA. YLC-assembly lowers the technical difficulty of Mb-sized DNA assembly and could be a valuable tool for large-scale genome engineering and synthetic genomics.


Assuntos
Técnicas Genéticas , Saccharomyces cerevisiae , Biologia Sintética , Estágios do Ciclo de Vida , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Biologia Sintética/métodos
17.
J Adv Res ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37442424

RESUMO

BACKGROUND: Genome simplification is an important topic in the field of life sciences that has attracted attention from its conception to the present day. It can help uncover the essential components of the genome and, in turn, shed light on the underlying operating principles of complex biological systems. This has made it a central focus of both basic and applied research in the life sciences. With the recent advancements in related technologies and our increasing knowledge of the genome, now is an opportune time to delve into this topic. AIM OF REVIEW: Our review investigates the progress of genome simplification from two perspectives: genome size reduction and complexity simplification. In addition, we provide insights into the future development trends of genome simplification. KEY SCIENTIFIC CONCEPTS OF REVIEW: Reducing genome size requires eliminating non-essential elements as much as possible. This process has been facilitated by advances in genome manipulation and synthesis techniques. However, we still need a better and clearer understanding of living systems to reduce genome complexity. As there is a lack of quantitative and clearly defined standards for this task, we have opted to approach the topic from various perspectives and present our findings accordingly.

18.
Bioresour Technol ; 382: 129174, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37187332

RESUMO

Lignocellulosic biomass is a promising feedstock to produce sustainable fuels and energy toward a green bioeconomy. A surfactant-assisted ethylenediamine (EDA) was developed for the deconstruction and conversion of corn stover in this study. The effects of surfactants on the whole conversion process of corn stover was also evaluated. The results showed that xylan recovery and lignin removal in solid fraction were significantly enhanced by surfactant-assisted EDA. The glucan and xylan recoveries in solid fraction reached 92.1% and 65.7%, respectively, while the lignin removal was 74.5% by sodium dodecyl sulfate (SDS)-assisted EDA. SDS-assisted EDA also improved the sugar conversion in 12 h enzymatic hydrolysis at low enzyme loadings. The ethanol production and glucose consumption of washed EDA pretreated corn stover in simultaneous saccharification and co-fermentation were improved with the addition of 0.001 g/mL SDS. Therefore, surfactant-assisted EDA showed the potential to improve the bioconversion performance of biomass.


Assuntos
Lignina , Zea mays , Lignina/metabolismo , Zea mays/metabolismo , Tensoativos , Biomassa , Xilanos , Fermentação , Etilenodiaminas , Hidrólise
19.
Bioresour Technol ; 383: 129229, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244302

RESUMO

Fengycin possesses antifungal activity but has limited application due to its low yields. Amino acid precursors play a crucial role in fengycin synthesis. Herein, the overexpression of alanine, isoleucine, and threonine transporter-related genes in Bacillus subtilis increased fengycin production by 34.06%, 46.66%, and 7.83%, respectively. Particularly, fengycin production in B. subtilis reached 871.86 mg/L with the addition of 8.0 g/L exogenous proline after enhancing the expression of the proline transport-related gene opuE. To overcome the metabolic burden caused by excessive enhancement of gene expression for supplying precursors, B. subtilis and Corynebacterium glutamicum which produced proline, were co-cultured, which further improved fengycin production. Fengycin production in the co-culture of B. subtilis and C. glutamicum in shake flasks reached 1554.74 mg/L after optimizing the inoculation time and ratio. The fengycin level in the fed-batch co-culture was 2309.96 mg/L in a 5.0-L bioreactor. These findings provide a new strategy for improving fengycin production.


Assuntos
Bacillus subtilis , Corynebacterium glutamicum , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Corynebacterium glutamicum/metabolismo , Técnicas de Cocultura , Prolina/metabolismo , Engenharia Metabólica
20.
Front Bioeng Biotechnol ; 11: 1183354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214278

RESUMO

Synthetic biology combines the disciplines of biology, chemistry, information science, and engineering, and has multiple applications in biomedicine, bioenergy, environmental studies, and other fields. Synthetic genomics is an important area of synthetic biology, and mainly includes genome design, synthesis, assembly, and transfer. Genome transfer technology has played an enormous role in the development of synthetic genomics, allowing the transfer of natural or synthetic genomes into cellular environments where the genome can be easily modified. A more comprehensive understanding of genome transfer technology can help to extend its applications to other microorganisms. Here, we summarize the three host platforms for microbial genome transfer, review the recent advances that have been made in genome transfer technology, and discuss the obstacles and prospects for the development of genome transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...