Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae041, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38707842

RESUMO

In response to climate change, the nature of endophytes and their applications in sustainable agriculture have attracted the attention of academics and agro-industries. This work focused on the endophytic halophiles of the endangered Taiwanese salt marsh plant, Bolboschoenus planiculmis, and evaluated the functions of these isolates through in planta salinity stress alleviation assay using Arabidopsis. The endophytic strain Priestia megaterium BP01R2, which can promote plant growth and salinity tolerance, was further characterized through multi-omics approaches. The transcriptomics results suggested that BP01R2 could function by tuning hormone signal transduction, energy-producing metabolism, multiple stress responses, etc. In addition, the cyclodipeptide cyclo(L-Ala-Gly), which was identified by metabolomics analysis, was confirmed to contribute to the alleviation of salinity stress in stressed plants via exogenous supplementation. In this study, we used multi-omics approaches to investigate the genomics, metabolomics, and tropisms of endophytes, as well as the transcriptomics of plants in response to the endophyte. The results revealed the potential molecular mechanisms underlying the occurrence of biostimulant-based plant-endophyte symbioses with possible application in sustainable agriculture.

2.
Antonie Van Leeuwenhoek ; 117(1): 49, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448684

RESUMO

A marine bacterial strain, named NTOU-MSR1T, was isolated from marine sediment of northern coast of Taiwan. This bacterium was Gram-stain-negative, aerobic, and motile, with a single flagellum. Its rod-shaped cells measured approximately 0.5-0.6 µm in width and 1.8-2.0 µm in length. NTOU-MSR1T grew at temperatures ranging from 10 to 45 °C, optimally at 30 °C. The pH range for growth was 7.0-10.0, with optimal growth at pH 7.0-8.0. It tolerated NaCl concentrations up to 12%. The cell membrane predominantly contained fatty acids such C16:1ω7c, C18:1ω7c, and C16:0. The overall genome relatedness indices indicated that strain NTOU-MSR1T had an average nucleotide identity (ANI) of 87.88% and a digital DNA-DNA hybridization (dDDH) value of 35.40% compared to its closest related species, O. marisflavi 102-Na3T. These values fell below the 95% and 70% threshold for species delineation, respectively. These findings suggested that the strain NTOU-MSR1T was a new member of the Oceanimonas genus. Its genomic DNA had a G + C content of 61.0 mol%. Genomic analysis revealed genes associated with the catechol branch of ß- ketoadipate pathway for degrading polycyclic aromatic hydrocarbons, resistance to heavy metal, biosynthesis of polyhydroxybutyrate and the production of glycoside hydrolases (GH19, GH23, and GH103) for chitin and glycan digestion. Additionally, NTOU-MSR1T was capable of synthesizing biosurfactants and potentially degrading plastic. The proposed name for this new species is Oceanimonas pelagia, with the type strain designated as NTOU-MSR1T (= BCRC 81403T = JCM 36023T).


Assuntos
Bactérias , Flagelos , Membrana Celular , Sedimentos Geológicos , DNA
3.
Antioxidants (Basel) ; 13(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38539869

RESUMO

This study represents a primary investigation centered on screening six marine fungi, Emericellopsis maritima, Engyodontium album, Hypomontagnella monticulosa, Hortaea werneckii, Trichoderma harzianum, and Aspergillus sp.7, associated with the red algae Pterocladiella capillacea, which was collected from Chao-Jin Park in Keelung, Taiwan, as potential immunostimulants for shrimp aquaculture. Recognizing the imperative for novel strategies to combat pathogen resistance arising from the use of antibiotics and vaccines in aquaculture, this study aimed to evaluate the metabolomic profile, antioxidant capabilities, and antibacterial properties of marine fungi. The antibacterial activity of the fungal extract was evaluated against five major aquaculture pathogens: Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Enterobacter aeruginosa, and Vibrio parahaemolyticus. The viability and cytotoxicity of marine fungal extracts were preliminarily evaluated using brine shrimps before assessing cytotoxicity, growth performance, immune efficacy, and disease resistance in white shrimp. The present study demonstrated that total phytochemical analysis correlated with antioxidant activity. Emericellopsis maritima and Trichoderma harzianum exhibited the strongest DPPH antioxidant scavenging activities of half-maximal inhibitory concentration (IC50) 16.5 ± 1.2 and 12.2 ± 2.6, which are comparable to ascorbic acid. LC-HDMSE analysis of the marine fungal extracts identified more than 8000 metabolites mainly classified under the superclass level of organic oxygen compounds, Organoheterocyclic compounds, Phenylpropanoids and polyketides, alkaloid and derivatives, benzenoids, lignans and neolignans, lipid and lipid-like molecules, nucleotides and nucleosides, organic nitrogen compounds, and organic acids and derivatives. Overall, our study significantly contributes to the advancement of sustainable practices by exploring alternative antimicrobial solutions and harnessing the bioactive potential inherent in marine endophytic fungi. In conclusion, our study advances our comprehension of fungal communities and their applications and holds promise for the development of effective and environmentally friendly approaches for enhancing shrimp health and productivity.

4.
World J Gastrointest Surg ; 15(10): 2331-2342, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37969715

RESUMO

BACKGROUND: Colorectal cancer ranks third in global cancer prevalence and stands as the second leading cause of cancer-related mortalities. With obesity recognized as a pivotal risk factor for colorectal cancer, the potential protective role of bariatric surgery, especially laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy, has garnered attention. AIM: To investigate the Roux-en-Y gastric bypass (RYGB) vs sleeve gastrectomy (SG) effect on colorectal cancer incidence in obese individuals. METHODS: A systematic review and meta-analysis of the literature was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Seventeen studies with a total of 12497322 patients were included. The primary outcome was the relative risk (RR) of developing colorectal cancer in obese patients who underwent weight loss surgery compared to those who did not. Secondary outcomes included determining the RR for colon and rectal cancer separately and subgroup analyses by gender and type of weight loss surgery. RESULTS: The meta-analysis revealed a 54% reduction in colorectal cancer risk in morbidly obese patients who underwent bariatric surgery compared to those who did not. A significant 46% reduction in colorectal cancer risk was observed among female patients. However, no significant differences were found in the meta-analysis for various types of bariatric surgery, such as SG and RYGB. CONCLUSION: This meta-analysis reveals weight loss surgery, regardless of type, reduces colorectal cancer risk, especially in women, as indicated by RR and hazard ratio assessments. Further validation is essential.

5.
Plants (Basel) ; 12(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631129

RESUMO

Arbuscular mycorrhizal (AM) fungi enhance plant stress tolerance, but it is unclear whether AM fungi affect heat tolerance in cucumbers. This study aimed to analyze how an AM fungus, Diversispora versiformis, affected growth, chlorophyll, five osmolytes, and plasma membrane intrinsic proteins (PIPs) and heat shock protein 70 (Hsp70) gene expression in cucumber leaves after a short-term (80 h) heat stress. Heat treatment significantly reduced root AM fungal colonization rate (0.26 folds). Heat treatment also distinctly suppressed plant height, stem diameter, and biomass, whereas AM fungal inoculation improved these growth variables as well as the chlorophyll index, with the benefit being more obvious under heat than under no-heat stress conditions. Heat treatment triggered differential changes in osmolytes (sucrose, fructose, and betaine) of inoculated and uninoculated cucumbers, whereas inoculation with AM fungus significantly raised leaf sucrose, fructose, glucose, betaine, and proline levels when compared to non-AM fungal inoculation. Heat treatment increased the expression of two (CsPIP1;6 and CsPIP2;1) of eight CsPIPs in inoculated and uninoculated plants, whereas AM fungal inoculation up-regulated the expression of CsPIP1;6, CsPIP2;1, and CsPIP2;6 under heat stress conditions. Hsp70s expressed differently in inoculated and uninoculated plants under heat versus no-heat stress, with 6 of 11 CsHsp70s down-regulated in inoculated plants. Under heat stress conditions, AM fungus only up-regulated CsHsp70-8 expression in 11 Hsp70s, while another eight CsHsp70s were down-regulated. Heat treatment and AM fungal inoculation both increased the expression of CsHsp70-8 and CsPIP1;6. It was concluded that AM fungus-inoculated cucumbers have high levels of growth, chlorophyll, and osmolytes under heat stress and do not require high CsPIPs and CsHsp70s expression to tolerate a short-term heat treatment.

6.
Front Plant Sci ; 14: 1140467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909381

RESUMO

Walnut (Juglans regia) is an important nut tree species in the world, whereas walnut trees often face inadequate phosphorus (P) levels of soil, negatively limiting its growth and yield. Arbuscular mycorrhizal fungi (AMF) can colonize walnut roots, but whether and how AMF promotes walnut growth, physiological activities, and P acquisition is unclear. The present study aimed to evaluate the effects of Diversispora spurca on plant growth, chlorophyll component concentrations, leaf gas exchange, sugar and P concentrations, and expression of purple acid phosphatase (PAP) and phosphate transporter (PT) genes in leaves of J. regia var. Liaohe 1 seedling under moderate (100 µmol/L P) and low P (1 µmol/L P) levels conditions. Three months after inoculation, the root mycorrhizal colonization rate and soil hyphal length were 45.6-53.2% and 18.7-39.9 cm/g soil, respectively, and low P treatment significantly increased both root mycorrhizal colonization rate and soil hyphal length. Low P levels inhibited plant growth (height, stem diameter, and total biomass) and leaf gas exchange (photosynthetic rate, transpiration rate and stomatal conductance), while AMF colonization significantly increased these variables at moderate and low P levels. Low P treatment limited the level of chlorophyll a, but AMF colonization did not significantly affect the level of chlorophyll components, independent on soil P levels. AMF colonization also increased leaf glucose at appropriate P levels and leaf fructose at low P levels than non-AMF treatment. AMF colonization significantly increased leaf P concentration by 21.0-26.2% than non-AMF colonization at low and moderate P levels. Low P treatment reduced the expression of leaf JrPAP10, JrPAP12, and JrPT3;2 in the inoculated plants, whereas AMF colonization up-regulated the expression of leaf JrPAP10, JrPAP12, and JrPT3;2 at moderate P levels, although AMF did not significantly alter the expression of JrPAPs and JrPTs at low P levels. It is concluded that AMF improved plant growth, leaf gas exchange, and P acquisition of walnut seedlings at different P levels, where mycorrhizal promotion of P acquisition was dominated by direct mycorrhizal involvement in P uptake at low P levels, while up-regulation of host PAPs and PTs expressions at moderate P levels.

7.
BMC Plant Biol ; 23(1): 118, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36849930

RESUMO

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) have a positive effect on drought tolerance of plants after establishing reciprocal resymbiosis with roots, while the underlying mechanism is not deciphered. Metabolomics can explain the mechanism of plant response to environmental stress by analyzing the changes of all small molecular weight metabolites. The purpose of this study was to use Ultra High Performance Liquid Chromatography Q Exactive Mass Spectrometer to analyze changes in root metabolites of walnut (Juglans regia) after inoculation with an arbuscular mycorrhizal fungus Diversispora spurca under well-watered (WW) and drought stress (DS). RESULTS: Sixty days of soil drought significantly inhibited root mycorrhizal colonization rate, shoot and root biomass production, and leaf water potential in walnut, while AMF inoculation significantly increased biomass production and leaf water potential, accompanied by a higher increase magnitude under DS versus under WW. A total of 3278 metabolites were identified. Under WW, AMF inoculation up-regulated 172 metabolites and down-regulated 61 metabolites, along with no changes in 1104 metabolites. However, under DS, AMF inoculation up-regulated 49 metabolites and down-regulated 116 metabolites, coupled with no changes in 1172 metabolites. Among them, juglone (a quinone found in walnuts) as the first ranked differential metabolite was up-regulated by AMF under WW but not under DS; 2,3,5-trihydroxy-5-7-dimethoxyflavanone as the first ranked differential metabolite was increased by AMF under DS but not under WW. The KEGG annotation showed a large number of metabolic pathways triggered by AMF, accompanied by different metabolic pathways under WW and DS. Among them, oxidative phosphorylation and phenylalanine metabolism and biosynthesis were triggered by AMF in response to WW and DS, where N-acetyl-L-phenylalanine was induced by AMF to increase under DS, while decreasing under WW. CONCLUSION: This study provides new insights into the metabolic mechanisms of mycorrhiza-enhanced drought tolerance in walnuts.


Assuntos
Juglans , Micorrizas , Secas , Metabolômica , Resistência à Seca
8.
Microb Ecol ; 86(2): 1023-1034, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36471016

RESUMO

Soil water stress (WS) affects the decomposition of soil organic carbon (SOC) and carbon (C) emissions. Glomalin, released by arbuscular mycorrhizal fungi into soil that has been defined as glomalin-related soil protein (GRSP), is an important pool of SOC, with hydrophobic characteristics. We hypothesized that mycorrhizal fungi have a positive effect on SOC pools under soil WS for C sequestration in GRSP secreted by extraradical mycorrhizal hyphae. A microsystem was used to establish a root chamber (co-existence of roots and extraradical mycorrhizal hyphae) and a hyphal chamber (the presence of extraradical mycorrhizal hyphae) to study changes in plant growth, leaf water potential, soil aggregate stability, SOC, GRSP, C concentrations in GRSP (CGRSP), and the contribution of CGRSP to SOC after inoculating Rhizophagus intraradices with trifoliate orange (Poncirus trifoliata) in the root chamber under adequate water (AW) and WS. Inoculation with R. intraradices alleviated negative effects on leaf water potential and plant growth after 7 weeks of WS. Soil WS decreased SOC and mean weight diameter (MWD), while AMF inoculation led to an increase in SOC and MWD in both chambers, with the most prominent increase in the hyphal chamber under WS. The C concentration in easily extractable GRSP (EE-GRSP) and difficultly extractable GRSP (DE-GRSP) was 7.32 - 12.57 and 24.90 - 32.60 mg C/g GRSP, respectively. WS reduced CGRSP, while AMF mitigated the reduction. Extraradical mycorrhizal hyphae increased GRSP production and CGRSP, along with a more prominent increase in DE-GRSP under WS than under AW. Extraradical mycorrhizal hyphae increased the contribution of CDE-GRSP to SOC only under WS. CEE-GRSP and CDE-GRSP were significantly positively correlated with SOC and MWD. It is concluded that extraradical mycorrhizal hyphae prominently promoted C sequestration of recalcitrant DE-GRSP under soil WS, thus contributing more organic C accumulation and preservation in aggregates and soil C pool.


Assuntos
Micorrizas , Solo/química , Hifas , Sequestro de Carbono , Carbono/metabolismo , Desidratação/metabolismo , Proteínas Fúngicas/metabolismo , Glicoproteínas/metabolismo
9.
Tree Physiol ; 43(3): 452-466, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36263985

RESUMO

A cultivable endophytic fungus, Piriformospora indica, improves growth and enhances stress tolerance of host plants, but the underlying mechanisms remain unknown. We hypothesized that P. indica enhanced the drought tolerance of the host by regulating the antioxidant defense system and composition of fatty acids. Trifoliate orange (Poncirus trifoliata) seedlings were inoculated with P. indica under ample water and drought stress to analyze the change in plant growth, reactive oxygen species (ROS) levels, antioxidant enzyme activities, non-enzymatic antioxidant concentrations, fatty acid compositions, and expressions of both antioxidant enzyme genes and fatty acid desaturase (FAD) genes. The 9-week soil water deficit significantly increased the colonization of P. indica to roots, and P. indica promoted the increase of shoot biomass under drought. Soil drought triggered an elevation of hydrogen peroxide in roots, while the inoculated plants had lower levels of ROS (hydrogen peroxide and superoxide anion radicals) and lower degree of membrane lipid peroxidation (based on malondialdehyde levels) under drought. Drought treatment also elevated ascorbic acid and glutathione concentrations, and the elevation was further amplified after P. indica inoculation. Inoculated plants under drought also recorded significantly higher iron-superoxide dismutase (Fe-SOD), manganese-superoxide dismutase (Mn-SOD), peroxidases, catalase, glutathione reductase and ascorbate peroxidase activities, accompanied by up-regulation of PtFe-SOD and PtCu/Zn-SOD expressions. Inoculation with P. indica significantly increased total saturated fatty acids (e.g., C6:0, C15:0, C16:0, C23:0 and C24:0) concentration and reduced total unsaturated fatty acids (e.g., C18:1N9C, C18:2N6, C18:3N3, C18:1N12 and C19:1N9T) concentrations, leading to a decrease in the unsaturation index of fatty acids, which may be associated with the up-regulation of PtFAD2 and PtFAD6 and down-regulation of PtΔ9. It was concluded that the colonization of P. indica can activate enzyme and non-enzyme defense systems and regulate the composition of fatty acids under drought, thus alleviating the oxidative damage to the host caused by drought.


Assuntos
Basidiomycota , Poncirus , Antioxidantes/metabolismo , Poncirus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Ácidos Graxos/metabolismo , Basidiomycota/fisiologia , Superóxido Dismutase/metabolismo , Secas , Água/metabolismo
10.
Front Plant Sci ; 13: 1089420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523633

RESUMO

Arbuscular mycorrhizal fungi (AMF) have important roles in enhancing drought tolerance of host plants, but it is not clear whether and how AMF increase drought tolerance in walnut (Juglans regia). We hypothesized that AMF could activate antioxidant defense systems and heat shock transcription factors (Hsfs) transcription levels to alleviate oxidative damage caused by drought. The walnut variety 'Liaohe No. 1' was inoculated with Diversispora spurca and exposed to well-watered (WW, 75% of the maximum soil water capacity) and drought stress (DS, 50% of the maximum soil water capacity) for 6 weeks. Plant growth, antioxidant defense systems, and expressions of five JrHsfs in leaves were studied. Such drought treatment inhibited root mycorrhizal colonization, while plant growth performance was still improved by AMF inoculation. Mycorrhizal fungal inoculation triggered the increase in soluble protein, glutathione (GSH), ascorbic acid (ASC), and total ASC contents and ascorbic peroxidase and glutathione reductase activities, along with lower hydrogen peroxide (H2O2), superoxide anion radical (O2 •-), and malondialdehyde (MDA) levels, compared with non-inoculation under drought. Mycorrhizal plants also recorded higher peroxidase, catalase, and superoxide dismutase activities than non-mycorrhizal plants under drought. The expression of JrHsf03, JrHsf05, JrHsf20, JrHsf22, and JrHsf24 was up-regulated under WW by AMF, while the expression of JrHsf03, JrHsf22, and JrHsf24 were up-regulated only under drought by AMF. It is concluded that D. spurca induced low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and part Hsfs expressions.

11.
iScience ; 25(6): 104365, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620431

RESUMO

Characterization of covalency of intermolecular interactions in the van der Waals distance limit remains challenging because the interactions between molecules are weak, dynamic, and not measurable. Herein, we approach this issue in a series of supramolecular mixed-valence (MV) donor(D)-bridge(B)-acceptor(A) systems consisting of two bridged Mo2 units with a C6H6 molecule encapsulated, as characterized by the X-ray crystal structures. Comparative analysis of the intervalence charge transfer spectra in benzene and dichloromethane substantiates the strong electronic decoupling effect of the solvating C6H6 molecule that breaks down the dielectric solvation theory. Ab initio and DFT calculations unravel that the intermolecular orbital overlaps between the complex bridge and the C6H6 molecule alter the electronic states of the D-B-A molecule through intermolecular nuclear dynamics. This work exemplifies that site-specific intermolecular interaction can be exploited to control the chemical property of supramolecular systems and to elucidate the functionalities of side-chains in biological systems.

12.
Commun Biol ; 5(1): 454, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551233

RESUMO

Bacterial polyynes are highly active natural products with a broad spectrum of antimicrobial activities. However, their detailed mechanism of action remains unclear. By integrating comparative genomics, transcriptomics, functional genetics, and metabolomics analysis, we identified a unique polyyne resistance gene, masL (encoding acetyl-CoA acetyltransferase), in the biosynthesis gene cluster of antifungal polyynes (massilin A 1, massilin B 2, collimonin C 3, and collimonin D 4) of Massilia sp. YMA4. Crystallographic analysis indicated that bacterial polyynes serve as covalent inhibitors of acetyl-CoA acetyltransferase. Moreover, we confirmed that the bacterial polyynes disrupted cell membrane integrity and inhibited the cell viability of Candida albicans by targeting ERG10, the homolog of MasL. Thus, this study demonstrated that acetyl-CoA acetyltransferase is a potential target for developing antifungal agents.


Assuntos
Acetil-CoA C-Acetiltransferase , Antifúngicos , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Antifúngicos/farmacologia , Bactérias/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Poli-Inos/metabolismo , Poli-Inos/farmacologia
13.
J Hazard Mater ; 434: 128870, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452977

RESUMO

Phytoextraction is a cost-effective and eco-friendly technology to remove arsenic (As) from contaminated soil using plants and associated microorganisms. Pteris vittata is the most studied As hyperaccumulator, which effectively takes up inorganic arsenate via roots. Arsenic solubilization and speciation occur prior to plant absorption in the rhizosphere, which play a key role in As phytoextraction by P. vittata. This study investigated the metabolomic correlation of P. vittata and associated rhizospheric microorganisms during As phytoextraction. Three-month pot cultivation of P. vittata in As polluted soil was conducted. In rhizosphere, an increase of water-soluble As concentration and a decrease of pH was observed in the second month, suggesting acidic metabolites as a possible cause of As solubilization. A correlation network was built to elucidate the interactions among metabolites, bacteria and fungi in the rhizosphere of P. vittata. Our results demonstrate that the plant is the major driving force of rhizospheric microbiota generation, and both microbial community and metabolites in rhizosphere of P. vittata correlate to increased bioavailable As. Multi-omics analysis revealed that pterosins enrich microbes that potentially promote As phytoextraction. This study extends the current view of rhizospheric plant-microbes synergistic effects of hyperaccumulators on phytoextraction, which provides clues for developing efficient As phytoremediation approaches.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Pteris/metabolismo , Solo/química , Poluentes do Solo/metabolismo
14.
Environ Microbiol ; 24(1): 276-297, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863027

RESUMO

Brown root rot (BRR) caused by Phellinus noxius is a destructive tree disease in tropical and subtropical areas. To understand how BRR affects the composition of the plant rhizoplane-enriched microbiota, the microbiomes within five root-associated compartments (i.e., bulk soil, old/young root rhizosphere soil, old/young root tissue) of Ficus trees naturally infected by P. noxius were investigated. The level of P. noxius infection was determined by quantitative PCR. Illumina sequencing of the internal transcribed spacer and 16S rRNA revealed that P. noxius infection caused a significant reduction in fungal diversity in the bulk soil, the old root rhizosphere soil, and the old root tissue. Interestingly, Cosmospora was the only fungal genus positively correlated with P. noxius. The abundance and composition of dominant bacterial taxa such as Actinomadura, Bacillus, Rhodoplanes, and Streptomyces differed between BRR-diseased and healthy samples. Furthermore, 838 isolates belonging to 26 fungal and 35 bacterial genera were isolated and tested for interactions with P. noxius. Antagonistic activities were observed for isolates of Bacillus, Pseudomonas, Aspergillus, Penicillium, and Trichoderma. Cellophane overlay and cellulose/lignin utilization assays suggested that Cosmospora could tolerate the secretions of P. noxius and that the degradation of lignin by P. noxius may create suitable conditions for Cosmorpora growth.


Assuntos
Ficus , Microbiota , Trichoderma , Basidiomycota , Microbiota/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo , Árvores/microbiologia
15.
Front Plant Sci ; 13: 1101212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605949

RESUMO

Flavonoids are secondary metabolites widely found in plants with antioxidants, of which chalcone synthase (CHS) is a key enzyme required in flavonoid synthesis pathways. The objective of this study was to clone a CHS gene from trifoliate orange (Poncirus trifoliata) and analyze its biological information and partial functions. A PtCHS gene (NCBI accession: MZ350874) was cloned from the genome-wide of trifoliate orange, which has 1156 bp in length, encoding 391 amino acids, with a predicted protein relative molecular mass of 42640.19, a theoretical isoelectric point of 6.28, and a lipid coefficient of 89.82. The protein is stable, hydrophilic, and high sequence conservation (92.49% sequence homology with CHS gene of other species). PtCHS was highly expressed in stems, leaves and flowers, but very low expression in roots and seeds. Soil water deficit could up-regulate expressions of PtCHS in leaves. An arbuscular mycorrhizal fungus, Funneliformis mosseae, significantly increased plant biomass production, CHS activity, expressions of PtCHS, and total flavonoid content in leaves and roots, independent of soil water status. Total flavonoids were significantly positively correlated with PtCHS expression in leaves only and also positively with root mycorrhizal colonization. Such results provide insight into the important functions of PtCHS in trifoliate orange.

16.
Tree Physiol ; 42(3): 616-628, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34617114

RESUMO

The circadian rhythm of plants is associated with stress responses; however, it is not clear whether increased host plant drought tolerance by arbuscular mycorrhizal fungi (AMF) is associated with changes in the circadian clock. The present study aimed to analyze the effect of Funneliformis mosseae (Nicol. & Gerd.) Schüßler & Walker on the circadian clock gene expression patterns in trifoliate orange (Poncirus trifoliata L. Raf.) along with gas exchange, abscisic acid (ABA) levels and antioxidant enzyme gene expression under well-watered (WW) and drought stress (DS) conditions. Plant growth, net photosynthetic rate, stomatal conductance and ABA levels were significantly higher in AMF- than in non-AMF-inoculated plants regardless of soil water regimes. Six circadian clock genes, including PtPRR7, PtLHY, PtCCA1, PtGI, PtPIF3 and PtSRR1, were identified and showed rhythmic expression patterns over the course of the day. The AMF inoculation reduced the expression of most circadian clock genes in different time periods. However, AMF treatment significantly increased PtPRR7 and PtGI expression at 5:00 p.m. under WW and DS conditions, PtLHY expression at 1:00 a.m. and PtSRR1 expression at 9:00 p.m. At 1:00 a.m., AMF inoculation up-regulated the expression of the circadian clock genes PtPRR7, PtCCA1, PtLHY and PtPIF3 and the antioxidant enzyme genes PtFe-SOD, PtMn-SOD, PtCu/Zn-SOD, PtPOD and PtCAT1. Correlation analysis revealed that these changes in circadian clock gene expression were associated with antioxidant enzyme gene expression, root ABA and gas exchange. We concluded that mycorrhizal fungi have the ability to regulate the daily rhythm of the circadian clock in trifoliate orange plants in response to drought.


Assuntos
Relógios Circadianos , Citrus , Micorrizas , Poncirus , Secas , Micorrizas/fisiologia , Poncirus/genética , Poncirus/metabolismo
17.
ACS Meas Sci Au ; 1(3): 131-138, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34939075

RESUMO

In this work, we introduce a novel method for visualization and quantitative measurement of the vesicle opening process by correlation of vesicle impact electrochemical cytometry (VIEC) with confocal microscopy. We have used a fluorophore conjugated to lipids to label the vesicle membrane and manipulate the membrane properties, which appears to make the membrane more susceptible to electroporation. The neurotransmitters inside the vesicles were visualized by use of a fluorescence false neurotransmitter 511 (FFN 511) through accumulation inside the vesicle via the neuronal vesicular monoamine transporter 2 (VMAT 2). Optical and electrochemical measurements of single vesicle electroporation were carried out using an in-house, disk-shaped, gold-modified ITO (Au/ITO) microelectrode device (5 nm thick, 33 µm diameter), which simultaneously acted as an electrode surface for VIEC and an optically transparent surface for confocal microscopy. As a result, the processes of adsorption, electroporation, and opening of single vesicles followed by neurotransmitter release on the Au/ITO surface have been simultaneously visualized and measured. Three opening patterns of single isolated vesicles were frequently observed. Comparing the vesicle opening patterns with their corresponding VIEC spikes, we propose that the behavior of the vesicular membrane on the electrode surface, including the adsorption time, residence time before vesicle opening, and the retention time after vesicle opening, are closely related to the vesicle content and size. Large vesicles with high content tend to adsorb to the electrode faster with higher frequency, followed by a shorter residence time before releasing their content, and their membrane remains on the electrode surface longer compared to the small vesicles with low content. With this approach, we start to unravel the vesicle opening process and to examine the fundamentals of exocytosis, supporting the proposed mechanism of partial or subquantal release in exocytosis.

18.
Front Plant Sci ; 12: 740524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691116

RESUMO

Soil water deficit seriously affects crop production, and soil arbuscular mycorrhizal fungi (AMF) enhance drought tolerance in crops by unclear mechanisms. Our study aimed to analyze changes in non-targeted metabolomics in roots of trifoliate orange (Poncirus trifoliata) seedlings under well-watered and soil drought after inoculation with Rhizophagus intraradices, with a focus on terpenoid profile. Root mycorrhizal fungal colonization varied from 70% under soil drought to 85% under soil well-watered, and shoot and root biomass was increased by AMF inoculation, independent of soil water regimes. A total of 643 secondary metabolites in roots were examined, and 210 and 105 differential metabolites were regulated by mycorrhizal fungi under normal water and drought stress, along with 88 and 17 metabolites being up-and down-regulated under drought conditions, respectively. KEGG annotation analysis of differential metabolites showed 38 and 36 metabolic pathways by mycorrhizal inoculation under normal water and drought stress conditions, respectively. Among them, 33 metabolic pathways for mycorrhization under drought stress included purine metabolism, pyrimidine metabolism, alanine, aspartate and glutamate metabolism, etc. We also identified 10 terpenoid substances, namely albiflorin, artemisinin (-)-camphor, capsanthin, ß-caryophyllene, limonin, phytol, roseoside, sweroside, and α-terpineol. AMF colonization triggered the decline of almost all differential terpenoids, except for ß-caryophyllene, which was up-regulated by mycorrhizas under drought, suggesting potential increase in volatile organic compounds to initiate plant defense responses. This study provided an overview of AMF-induced metabolites and metabolic pathways in plants under drought, focusing on the terpenoid profile.

19.
Front Plant Sci ; 12: 745402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616419

RESUMO

Multiple functions of glomalin released by arbuscular mycorrhizal fungi are well-recognized, whereas the role of exogenous glomalins including easily extractable glomalin-related soil protein (EE-GRSP) and difficultly extractable glomalin-related soil protein (DE-GRSP) is unexplored for plant responses. Our study was carried out to assess the effects of exogenous EE-GRSP and DE-GRSP at varying strengths on plant growth and chlorophyll concentration of trifoliate orange (Poncirus trifoliata) seedlings, along with changes in root nutrient acquisition, auxin content, auxin-related enzyme and transporter protein gene expression, and element contents of purified GRSP. Sixteen weeks later, exogenous GRSP displayed differential effects on plant growth (height, stem diameter, leaf number, and biomass production): the increase by EE-GRSP and the decrease by DE-GRSP. The best positive effect on plant growth occurred at exogenous EE-GRSP at ½ strength. Similarly, the GRSP application also differently affected total chlorophyll content, root morphology (total length, surface area, and volume), and root N, P, and K content: positive effect by EE-GRSP and negative effect by DE-GRSP. Exogenous EE-GRSP accumulated more indoleacetic acid (IAA) in roots, which was associated with the upregulated expression of root auxin synthetic enzyme genes (PtTAA1, PtYUC3, and PtYUC4) and auxin influx transporter protein genes (PtLAX1, PtLAX2, and PtLAX3). On the other hand, exogenous DE-GRSP inhibited root IAA and indolebutyric acid (IBA) content, associated with the downregulated expression of root PtTAA1, PtLAX1, and PtLAX3. Root IAA positively correlated with root PtTAA1, PtYUC3, PtYUC4, PtLAX1, and PtLAX3 expression. Purified EE-GRSP and DE-GRSP showed similar element composition but varied in part element (C, O, P, Ca, Cu, Mn, Zn, Fe, and Mo) concentration. It concluded that exogenous GRSP triggered differential effects on growth response, and the effect was associated with the element content of pure GRSP and the change in auxins and root morphology. EE-GRSP displays a promise as a plant growth biostimulant in citriculture.

20.
J Fungi (Basel) ; 7(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34575754

RESUMO

Endophytes have the ability to improve plant nutrition alongside their agronomic performance, among which arbuscular mycorrhizal fungi provide the most benefits to their host. Previously, we reported for the first time that an arbuscular mycorrhizal-like fungus Piriformospora indica had the ability to colonize roots of trifoliate orange (Poncirus trifoliata) and conferred positive effects on nutrient acquisition. Present study showed the changes in fatty acids and sugars to unravel the physiological and symbiotic association of trifoliate orange with P. indica and an arbuscular mycorrhizal fungus, Funneliformis mosseae singly or in combination. All the endophytic fungi collectively increased fructose, glucose, and sucrose content in leaves and roots, along with a relatively higher increase with P. indica inoculation than with F. mosseae alone or dual inoculation. Treatment with P. indica increased the concentration of part unsaturated fatty acids such as C18:3N6, C20:2, C20:3N6, C20:4N6, C20:3N3, C20:5N3, C22:1N9, and C24:1. Additionally, P. indica induced the increase in the concentration of part saturated fatty acids such as C6:0, C8:0, C13:0, C14:0, and C24:0. F. mosseae hardly changed the content of fatty acids, except for increase in C14:0 and C20:5N3. Double inoculation only reduced the C21:0, C10:0, C12:0, C18:3N3, and C18:1 content and increased the C20:5N3 content. These endophytic fungi up-regulated the root PtFAD2, PtFAD6, PtΔ9, and PtΔ15 gene expression level, coupled with a higher expression of PtFAD2 and PtΔ9 by P. indica than by F. mosseae. It was concluded that P. indica exhibited a stronger response, for sugars and fatty acids, than F. mosseae on trifoliate orange. Such results also reveal the Pi (an in vitro culturable fungus) as a bio-stimulator applying to citriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...