Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36900159

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies and is associated with high mortality rates worldwide. The underlying mechanism of tumorigenesis in CRC is complex, involving genetic, lifestyle-related, and environmental factors. Although radical resection with adjuvant FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin) chemotherapy and neoadjuvant chemoradiotherapy have remained mainstays of treatment for patients with stage III CRC and locally advanced rectal cancer, respectively, the oncological outcomes of these treatments are often unsatisfactory. To improve patients' chances of survival, researchers are actively searching for new biomarkers to facilitate the development of more effective treatment strategies for CRC and metastatic CRC (mCRC). MicroRNAs (miRs), small, single-stranded, noncoding RNAs, can post-transcriptionally regulate mRNA translation and trigger mRNA degradation. Recent studies have documented aberrant miR levels in patients with CRC or mCRC, and some miRs are reportedly associated with chemoresistance or radioresistance in CRC. Herein, we present a narrative review of the literature on the roles of oncogenic miRs (oncomiRs) and tumor suppressor miRs (anti-oncomiRs), some of which can be used to predict the responses of patients with CRC to chemotherapy or chemoradiotherapy. Moreover, miRs may serve as potential therapeutic targets because their functions can be manipulated using synthetic antagonists and miR mimics.

2.
Front Oncol ; 12: 955313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212420

RESUMO

Studies have reported the effects of the gut microbiota on colorectal cancer (CRC) chemotherapy, but few studies have investigated the association between gut microbiota and targeted therapy. This study investigated the role of the gut microbiota in the treatment outcomes of patients with metastatic CRC (mCRC). We enrolled 110 patients with mCRC and treated them with standard cancer therapy. Stool samples were collected before administering a combination of chemotherapy and targeted therapy. Patients who had a progressive disease (PD) or partial response (PR) for at least 12 cycles of therapy were included in the study. We further divided these patients into anti-epidermal growth factor receptor (cetuximab) and anti-vascular endothelial growth factor (bevacizumab) subgroups. The gut microbiota of the PR group and bevacizumab-PR subgroup exhibited significantly higher α-diversity. The ß-diversity of bacterial species significantly differed between the bevacizumab-PR and bevacizumab-PD groups (P = 0.029). Klebsiella quasipneumoniae exhibited the greatest fold change in abundance in the PD group than in the PR group. Lactobacillus and Bifidobacterium species exhibited higher abundance in the PD group. The abundance of Fusobacterium nucleatum was approximately 32 times higher in the PD group than in the PR group. A higher gut microbiota diversity was associated with more favorable treatment outcomes in the patients with mCRC. Bacterial species analysis of stool samples yielded heterogenous results. K. quasipneumoniae exhibited the greatest fold change in abundance among all bacterial species in the PD group. This result warrants further investigation especially in a Taiwanese population.

3.
Biomedicines ; 10(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35625692

RESUMO

Studies have demonstrated that metformin has antitumor effects in addition to therapeutic effects on hyperglycemia; however, few studies have explored the effects of metformin in chemotherapy. Therefore, we hypothesized that the administration of metformin would enhance the therapeutic effects of 5-fluorouracil and oxaliplatin (FuOx) to inhibit the growth of colorectal cancer (CRC) cells in vitro and in vivo. The results of our in vitro experiments demonstrated that metformin significantly increased the effects of FuOx with respect to cell proliferation (p < 0.05), colony formation (p < 0.05), and migration (p < 0.01) and induced cell cycle arrest in the G0/G1 phase in HT29 cells and the S phase in SW480 and SW620 cells (p < 0.05). Flow cytometry analysis revealed that metformin combined with FuOx induced late apoptosis (p < 0.05) by mediating mitochondria-related Mcl-1 and Bim protein expression. Furthermore, in vivo, metformin combined with FuOx more notably reduced tumor volume than FuOx or metformin alone did in BALB/c mice (p < 0.05). These findings demonstrate that metformin may act as an adjunctive agent to enhance the chemosensitivity of CRC cells to FuOx. However, further clinical trials are warranted to validate the clinical implications of the findings.

4.
Front Oncol ; 10: 568012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194651

RESUMO

The gut microbiota is reported to play an important role in carcinogenesis and the treatment of CRC. SW480 and SW620 colon cancer cells integrated with infrared fluorescent proteins were injected into the rectal submucosa of nude mice. In the subsequent 30 days, we observed tumor growth weekly using an in vivo imaging system. The bacterial solution was infused anally into the mice to perform bacterial transplant. Phosphate-buffered saline, Acinetobacter lwoffii, and Bifidobacterium longum solutions were infused individually. The 16S ribosomal DNA (rDNA) and polymerase chain reaction of murine feces were investigated to confirm the colonization of target bacteria. In the SW620 orthotopic xenograft rectal cancer model, 4 of 5 mice developed rectal cancer by 30 days after submucosal injection. In the SW480 orthotopic xenograft rectal cancer model, 2 of 6 mice developed rectal cancer by 30 days after submucosal injection. For the 16S rDNA analysis, the mice receiving the bacterial solution infusion demonstrated positive findings for A. lwoffii and B. longum. With the successful establishment of a mouse model of orthotopic rectal cancer and transplant of target bacteria, we can further explore the relationship between gut microbiota and CRC. The role of fecal microbiota transplant in the treatment and alleviation of adverse events of chemotherapy in CRC could be clarified in subsequent studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...