Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Gene Ther ; 31(9-10): 489-498, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39134629

RESUMO

Recombinant adeno-associated virus (rAAV) vectors are currently the only proven vehicles for treating ophthalmological diseases through gene therapy. A wide range of gene therapy programs that target ocular diseases are currently being pursued. Nearly 20 years of research have gone into enhancing the efficacy of targeting retinal tissues and improving transgene delivery to specific cell types. The engineered AAV capsid, AAV2.7m8 is currently among the best capsids for transducing the retina following intravitreal (IVT) injection. However, adverse effects, including intraocular inflammation, have been reported following retinal administration of AAV2.7m8 vectors in clinical trials. Furthermore, we have consistently observed that AAV2.7m8 exhibits low packaging titers irrespective of the vector construct design. In this report, we found that AAV2.7m8 packages vector genomes with a higher degree of heterogeneity than AAV2. We also found that genome-loaded AAV2.7m8 stimulated the infiltration of microglia in mouse retinas following IVT administration, while the response to genome-loaded AAV2 and empty AAV2.7m8 capsids produced much milder responses. This finding suggests that IVT administration of AAV2.7m8 vectors may stimulate retinal immune responses in part because of its penchant to package and deliver non-unit length genomes.


Assuntos
Capsídeo , Dependovirus , Terapia Genética , Vetores Genéticos , Retina , Dependovirus/genética , Animais , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Camundongos , Retina/metabolismo , Capsídeo/metabolismo , Terapia Genética/métodos , Genoma Viral , Humanos , Camundongos Endogâmicos C57BL , Transdução Genética/métodos , Microglia/metabolismo
2.
Mol Ther Methods Clin Dev ; 32(2): 101230, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38558570

RESUMO

Recombinant adeno-associated virus (rAAV)-based gene therapy is entering clinical and commercial stages at an unprecedented pace. Triple transfection of HEK293 cells is currently the most widely used platform for rAAV manufacturing. Here, we develop low-cis triple transfection that decreases transgene plasmid use by 10- to 100-fold and overcomes several major limitations associated with standard triple transfection. This new method improves packaging of yield-inhibiting transgenes by up to 10-fold, and generates rAAV batches with reduced plasmid backbone contamination that otherwise cannot be eliminated in downstream processing. When tested in mice and compared with rAAV produced by standard triple transfection, low-cis rAAV shows comparable or superior potency and results in diminished plasmid backbone DNA and RNA persistence in tissue. Mechanistically, low-cis triple transfection relies on the extensive replication of transgene cassette (i.e., inverted terminal repeat-flanked vector DNA) in HEK293 cells during production phase. This cost-effective method can be easily implemented and is widely applicable to producing rAAV of high quantity, purity, and potency.

3.
Viruses ; 15(6)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37376529

RESUMO

Clinical-grade preparations of adeno-associated virus (AAV) vectors used for gene therapy typically undergo a series of diagnostics to determine titer, purity, homogeneity, and the presence of DNA contaminants. One type of contaminant that remains poorly investigated is replication-competent (rc)AAVs. rcAAVs form through recombination of DNA originating from production materials, yielding intact, replicative, and potentially infectious virus-like virions. They can be detected through the serial passaging of lysates from cells transduced by AAV vectors in the presence of wildtype adenovirus. Cellular lysates from the last passage are subjected to qPCR to detect the presence of the rep gene. Unfortunately, the method cannot be used to query the diversity of recombination events, nor can qPCR provide insights into how rcAAVs arise. Thus, the formation of rcAAVs through errant recombination events between ITR-flanked gene of interest (GOI) constructs and expression constructs carrying the rep-cap genes is poorly described. We have used single molecule, real-time sequencing (SMRT) to analyze virus-like genomes expanded from rcAAV-positive vector preparations. We present evidence that sequence-independent and non-homologous recombination between the ITR-bearing transgene and the rep/cap plasmid occurs under several events and rcAAVs spawn from diverse clones.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Vetores Genéticos/genética , Plasmídeos , Genoma Viral , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA