Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175856

RESUMO

Enhancement in chemisorption is one of the active research areas in carbon materials. To remedy the thermally degraded chemisorption occurring at high temperatures, we report a comprehensive study of kink structures in free-standing monoatomic carbon nanowires upon heating. Our Monte Carlo simulation considers multi-monoatomic carbon chains laterally interacting by van der Waals forces. Our study reveals that carbon nanowires maintain their linearity regardless of chain length at low temperatures, but this is not the case at high temperatures. Disordered kink structure is observed in short carbon chains, especially above the Peierls transition temperature. A severe kink structure may increase the possibility of attaching negatively charged atoms, thereby contributing to the development of next-generation materials for chemisorption at high temperatures. We have also provided an important indication that any physical property of the finite-length carbon chain predicted by ab initio calculation should reconsider the atomic rearrangement due to thermal instability at high temperatures.


Assuntos
Nanofios , Nanofios/química , Carbono/química , Simulação por Computador , Temperatura Baixa , Temperatura de Transição
2.
Sci Rep ; 9(1): 4056, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858486

RESUMO

As a result of extensive investigations into deformation mechanisms of titanium alloys, it has been found that ductile and brittle behavior occurs during diamond cutting of the alloys. Other than implementing ductile regime machining for improving machining performances, in this study, an application of magnetic field in diamond cutting is proposed to enhance the machining performances in both ductile and brittle deformations in diamond cutting of titanium alloys. Results from the experiments showed that under the influence of a magnetic field, the cutting heat at the tool/titanium interface decreased, and surface damages induced from the brittle deformation were remarkably suppressed. The surface quality of both ductile and brittle deformation areas was enhanced in a presence of the magnetic field, which the surface profiles were less distortive with fewer cracks and defects in brittle deformation regions, and the cutting forces at the transition point became less fluctuant and much smoother. This study contributes enhancements of machining performances in ductile and brittle machining in diamond cutting of titanium alloys, increasing the precise level of machined components made with titanium alloys.

3.
Sci Rep ; 8(1): 3934, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500386

RESUMO

Titanium alloys are extensively applied in biomedical industries due to their excellent material properties. However, they are recognized as difficult to cut materials due to their low thermal conductivity, which induces a complexity to their deformation mechanisms and restricts precise productions. This paper presents a new observation about the removal regime of titanium alloys. The experimental results, including the chip formation, thrust force signal and surface profile, showed that there was a critical cutting distance to achieve better surface integrity of machined surface. The machined areas with better surface roughness were located before the clear transition point, defining as the ductile to brittle transition. The machined area at the brittle region displayed the fracture deformation which showed cracks on the surface edge. The relationship between depth of cut and the ductile to brittle transaction behavior of titanium alloys in ultra-precision machining(UPM) was also revealed in this study, it showed that the ductile to brittle transaction behavior of titanium alloys occurred mainly at relatively small depth of cut. The study firstly defines the ductile to brittle transition behavior of titanium alloys in UPM, contributing the information of ductile machining as an optimal machining condition for precise productions of titanium alloys.

4.
Nucleic Acids Res ; 44(18): 8976-8989, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27342279

RESUMO

Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2'-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture.


Assuntos
Conformação de Ácido Nucleico , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Archaea/genética , Microscopia Crioeletrônica , Espectroscopia de Ressonância Magnética , Metilação , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Estabilidade de RNA , Transporte de RNA , RNA Arqueal/química , RNA Arqueal/genética , RNA Ribossômico/genética
5.
Archaea ; 2013: 614735, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554567

RESUMO

Given that ribosomes are one of the most important cellular macromolecular machines, it is not surprising that there is intensive research in ribosome biogenesis. Ribosome biogenesis is a complex process. The maturation of ribosomal RNAs (rRNAs) requires not only the precise cleaving and folding of the pre-rRNA but also extensive nucleotide modifications. At the heart of the processing and modifications of pre-rRNAs in Archaea and Eukarya are ribonucleoprotein (RNP) machines. They are called small RNPs (sRNPs), in Archaea, and small nucleolar RNPs (snoRNPs), in Eukarya. Studies on ribosome biogenesis originally focused on eukaryotic systems. However, recent studies on archaeal sRNPs have provided important insights into the functions of these RNPs. This paper will introduce archaeal rRNA gene organization and pre-rRNA processing, with a particular focus on the discovery of the archaeal sRNP components, their functions in nucleotide modification, and their structures.


Assuntos
Archaea/genética , Archaea/metabolismo , Regulação da Expressão Gênica em Archaea , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...