Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 315: 120407, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228860

RESUMO

Many organisms are consuming food contaminated with micro- and nanoparticles of plastics, some of which absorb persistent organic pollutants (POPs) from the environment and acting as carrier vectors for increasing the bioavailability in living organisms. We recently reported that polymethylmethacrylate (PMMA) nanoparticles at low concentrations are not toxic to animal models tested. In this study, the toxicity of diphenylamine (DPA) incorporated PMMA nanoparticles are assessed using barnacle larvae as a model organism. The absorption capacity of DPA from water for commercially available virgin PMMA microparticles is relatively low (0.14 wt%) during a 48 h period, which did not induce exposure toxicity to barnacle nauplii. Thus, PMMA nanoparticles encapsulated with high concentrations of DPA (DPA-enc-PMMA) were prepared through a reported precipitation method to achieve 40% loading of DPA inside the particles. Toxicity of DPA-enc-PMMA nanoparticles were tested using freshly spawned acorn barnacle nauplii. The observed mortality of nauplii from DPA-enc-PMMA exposure was compared to the values obtained from pure DPA exposure in water. The mortality among the exposed acorn barnacle nauplii did not exceed 50% even at a high concentration of DPA inside the PMMA nanoparticles. The results suggest that the slow release of pollutants from polymer nanoparticles may not induce significant toxicity to the organism living in a dynamic environment. The impact of long-term exposure of DPA absorbed plastic nanoparticles need to be investigated in the future.


Assuntos
Poluentes Ambientais , Nanopartículas , Thoracica , Poluentes Químicos da Água , Animais , Microplásticos , Polimetil Metacrilato/toxicidade , Plásticos/toxicidade , Nanopartículas/toxicidade , Água , Poluentes Químicos da Água/toxicidade
2.
Sci Total Environ ; 806(Pt 4): 150965, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662627

RESUMO

Pollution from plastic waste is increasingly prevalent in the environment and beginning to generate significant adverse impact on the health of living organisms. In this study, we investigate the toxicity of polymer nanoparticles exposed to Acorn Barnacle (Amphibalanus amphitrite) nauplii, as an animal model. Highly stable aqueous dispersion of luminescent nanoparticles from three common polymers: polymethylmethacrylate (PMMA), polystyrene (PS), and polyvinylchloride (PVC), were prepared via nanoprecipitation and fully characterised. Exposure studies of these polymer particles to freshly spawned barnacle nauplii were performed within a concentration range from 1 to 25 mg/L under laboratory-controlled conditions. The exposure to PMMA and PS nanoparticles did not show detrimental toxicity and did not cause sufficient mortality to compute a LC50 value. However, PVC nanoparticles were significantly toxic with a mortality rate of up to 99% at 25 mg/L, and the calculated LC50 value for PVC nanoparticles was 7.66 ± 0.03 mg/L, 95% CI. Interestingly, PVC nanoparticle aggregates were observed to adhere to the naupliar carapace and appendages at higher concentrations and could not be easily removed by washings. To explore the possibility of chemical toxicity of polymer nanoparticles, analysis of the polymer powders which was used to prepare the nanoparticles was conducted. The presence of low molecular weight oligomers such as dimers, trimers and tetramers were observed in all polymer samples. The chemical nature and concentration of such compounds are likely responsible for the observed toxicity to the barnacle nauplii. Overall, our study shows that care should be exercised in generalising the findings of exposure studies performed using one type of plastic particles, as the use of different plastic particles may elicit different responses inside a living organism.


Assuntos
Nanopartículas , Thoracica , Animais , Larva , Nanopartículas/toxicidade , Plásticos , Polímeros/toxicidade
3.
Chem Commun (Camb) ; 56(85): 13044-13047, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33001077

RESUMO

Phenol-metal coordination polymers are used in applications such as catalysis, sensing and separation science. In addition, combining eco-friendly conditions with economical and handling advantages of the polymeric catalyst is of interest to the community. Here, we report a simple one pot synthesis of a tetracatechol based ligand and its coordination polymer with copper ions. The Cu polymer showed electrochemical potential with a band gap of 1.01 eV. The BET surface area of the metallopolymer was 91.19 m2 g-1 with 0.14 cm3 g-1 pore volume. The polymer catalyst was used in a one pot three component click reaction and in the borylation of unsaturated carbonyl compounds with a maximum 99% conversion in water and good turnover efficiency even after 4 repetitive catalysis cycles. The polymer catalyst offers several advantages such as high activity, easy handling, scalability, recyclability and cost effectiveness.

4.
J Am Chem Soc ; 139(17): 6086-6089, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28402116

RESUMO

Nickel-catalyzed addition of arylboron reagents to ketones results in aryl olefins directly. The neutral condition allows acidic protons of alcohols, phenols, and malonates to be present, and fragile structures are also tolerated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...