Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurogenetics ; 11(1): 27-40, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19517146

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by motor neuron loss and skeletal muscle atrophy. The loss of function of the smn1 gene, the main supplier of survival motor neuron protein (SMN) protein in human, leads to reduced levels of SMN and eventually to SMA. Here, we ask if the amphibian Xenopus tropicalis can be a good model system to study SMA. Inhibition of the production of SMN using antisense morpholinos leads to caudal muscular atrophy in tadpoles. Of note, early developmental patterning of muscles and motor neurons is unaffected in this system as well as acetylcholine receptors clustering. Muscular atrophy seems to rather result from aberrant pathfinding and growth arrest and/or shortening of motor axons. This event occurs in the absence of neuronal cell bodies apoptosis, a process comparable to that of amyotrophic lateral sclerosis. Xenopus tropicalis is revealed as a complementary animal model for the study of SMA.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/biossíntese , Sequência de Aminoácidos , Animais , Apoptose , Sequência de Bases , Modelos Animais de Doenças , Humanos , Hibridização In Situ , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/farmacologia , Receptores Colinérgicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Xenopus
2.
Dev Dyn ; 238(6): 1379-88, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19347954

RESUMO

The precise localization of gene expression within the developing embryo, and how it changes over time, is one of the most important sources of information for elucidating gene function. As a searchable resource, this information has up until now been largely inaccessible to the Xenopus community. Here, we present a new database of Xenopus gene expression patterns, queryable by specific location or region in the embryo. Pattern matching can be driven either from an existing in situ image, or from a user-defined pattern based on development stage schematic diagrams. The data are derived from the work of a group of 21 Xenopus researchers over a period of 4 days. We used a novel, rapid manual annotation tool, XenMARK, which exploits the ability of the human brain to make the necessary distortions in transferring data from the in situ images to the standard schematic geometry. Developmental Dynamics 238:1379-1388, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Expressão Gênica , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Humanos , Software , Xenopus laevis/anatomia & histologia
3.
Differentiation ; 74(5): 244-53, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16759290

RESUMO

Survivin is a member of the inhibitor of apoptosis proteins (IAP) family. These proteins contain one to three zinc-binding motifs termed bacculoviral IAP-binding repeats (BIRs). Survivin contains a single BIR motif. Contrary to other members that directly interact with caspases and inhibit apoptosis, Survivin is believed to have both antiapoptotic and proliferative functions. In mammals, Survivin is not detected in most adult tissues except in endothelial cells of newly formed capillaries and large blood vessels. Importantly, Survivin is highly expressed in all common human cancers. To gain a better view of Survivin expression and function during development, we used the amphibian Xenopus developmental model. We show that the genomes of X. laevis, X. tropicalis, Zebrafish, fugu pufferfish, and rainbow trout encode two different Survivin genes (Su1 and Su2), contrary to mammalian genomes, which encode a single one. In X. laevis, these two genes have a differential spatiotemporal transcription pattern. Transgenic expression of Su1 leads to an enlargement of tadpole's blood vessels with an increase in the number of endothelial cells. This effect requires a functional BIR domain and the p34/cdc2 phosphorylation site. It does not seem to rely on the antiapoptotic activity of Su1 as it is not observed in tadpoles overexpressing other antiapoptotic factors such as XIAP or BclXL. We conclude that Su1 ubiquitous gain of function leads directly or indirectly to an increase in blood vessels size via the proliferation of endothelial cells.


Assuntos
Vasos Sanguíneos/embriologia , Proteínas Inibidoras de Apoptose/metabolismo , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Humanos , Hibridização In Situ , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...