Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ALTEX ; 39(2): 297­314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35064273

RESUMO

Complex in vitro models (CIVM) offer the potential to improve pharmaceutical clinical drug attrition due to safety and/ or efficacy concerns. For this technology to have an impact, the establishment of robust characterization and qualifi­cation plans constructed around specific contexts of use (COU) is required. This article covers the output from a workshop between the Food and Drug Administration (FDA) and Innovation and Quality Microphysiological Systems (IQ MPS) Affiliate. The intent of the workshop was to understand how CIVM technologies are currently being applied by pharma­ceutical companies during drug development and are being tested at the FDA through various case studies in order to identify hurdles (real or perceived) to the adoption of microphysiological systems (MPS) technologies, and to address evaluation/qualification pathways for these technologies. Output from the workshop includes the alignment on a working definition of MPS, a detailed description of the eleven CIVM case studies presented at the workshop, in-depth analysis, and key take aways from breakout sessions on ADME (absorption, distribution, metabolism, and excretion), pharmacology, and safety that covered topics such as qualification and performance criteria, species differences and concordance, and how industry can overcome barriers to regulatory submission of CIVM data. In conclusion, IQ MPS Affiliate and FDA scientists were able to build a general consensus on the need for animal CIVMs for preclinical species to better determine species concordance. Furthermore, there was acceptance that CIVM technologies for use in ADME, pharmacology and safety assessment will require qualification, which will vary depending on the specific COU.


Assuntos
Alternativas aos Testes com Animais , Dispositivos Lab-On-A-Chip , Animais , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Preparações Farmacêuticas/metabolismo , Estados Unidos , United States Food and Drug Administration
2.
Lab Chip ; 20(6): 1049-1057, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32073020

RESUMO

Safety related drug failures continue to be a challenge for pharmaceutical companies despite the numerous complex and lengthy in vitro assays and in vivo studies that make up the typical safety screening funnel. A lack of complete translation of animal data to humans can explain some of those shortcomings. Differences in sensitivity and drug disposition between animals and humans may also play a role. Many gaps exist for potential target tissues of drugs that cannot be adequately modeled in vitro. Microphysiological systems (MPS) may help to better model these target tissues and provide an opportunity to better assess some aspects of human safety prior to clinical studies. There is hope that these systems can supplement current preclinical drug safety and disposition evaluations, filling gaps and enhancing our ability to predict and understand human relevant toxicities. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) MPS Affiliate is a group of pharmaceutical industry scientists who seek to expedite appropriate characterization and incorporation of MPS to potentially improve drug safety assessment and provide safer and more effective medicines to patients. In keeping with this mission, the IQ MPS Affiliate scientists have prepared a series of organotypic manuscripts for several key drug safety and disposition target tissues (lung, liver, kidney, skin, gastrointestinal, cardiovascular, and blood brain barrier/central nervous system). The goal of these manuscripts is to provide key information related to likely initial contexts of use (CoU) and key characterization data needed for incorporation of MPS in pharmaceutical safety screening including a list of characteristic functions, cell types, toxicities, and test agents (representing major mechanisms of toxicity) that can be used by MPS developers. Additional manuscripts focusing on testing biologically based therapeutics and ADME considerations have been prepared as part of this effort. These manuscripts focus on general needs for assessing biologics and ADME endpoints and include similar information to the tissue specific manuscripts where appropriate. The current manuscript is an introduction to several general concepts related to pharmaceutical industry needs with regard to MPS application and other MPS concepts that apply across the organ specific manuscripts.


Assuntos
Fígado , Preparações Farmacêuticas , Animais , Barreira Hematoencefálica , Humanos , Rim , Pulmão
3.
Lab Chip ; 19(19): 3152-3161, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31469131

RESUMO

The lung is a complex organ; it is both the initial barrier for inhaled agents and the site of metabolism and therapeutic effect for a subset of systemically administered drugs. Comprised of more than 40 cell types that are responsible for various important functions, the lung's complexity contributes to the subsequent challenges in developing complex in vitro co-culture models (also called microphysiological systems (MPS), complex in vitro models or organs-on-a-chip). Although there are multiple considerations and limitations in the development and qualification of such in vitro systems, MPS exhibit great promise in the fields of pharmacology and toxicology. Successful development and implementation of MPS models may enable mechanistic bridging between non-clinical species and humans, and increase clinical relevance of safety endpoints, while decreasing overall animal use. This article summarizes, from a biopharmaceutical industry perspective, essential elements for the development and qualification of lung MPS models. Its purpose is to guide MPS developers and manufacturers to expedite MPS utilization for safety assessment in the biopharmaceutical industry.


Assuntos
Técnicas de Cocultura , Dispositivos Lab-On-A-Chip , Pulmão/metabolismo , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Técnicas de Cocultura/instrumentação , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Técnicas Analíticas Microfluídicas/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...